EFFECT OF HEATING ON SOME PHYSICAL, CHEMICAL AND MINERALOGICAL ASPECTS OF FOREST SOIL

Bu araştırmanın amacı Gelibolu Tarihi Milli Parkından alınan orman topraklarını farklı sıcaklıklarda ısıtmanın toprakların fiziksel, kimyasal, minerolojik özelliklerine etkisini belirlemektir. Toprak örnekleri farklı sıcaklıklardaki (25, 100, 200, 300, 400 ve 500 °C) fırında 1 saat bekletilmiştir. Toprakların ısıtılması kil, silt, kısmen kimi sıcaklıklarda pH ve kireç, toplam N, değişebilir Ca, Mg, Na, KDK içeriğini düşürmüştür. Buna rağmen toprakların ısıtılması kum, agregat stabilitesi, elektriksel iletkenlik, kısmen bazı sıcaklıklarda değişebilir K, alınabilir P ve yanma kaybını artırmıştır. Toprakların ısıtılması toprak renginin valü ve kromaları üzerine farklı etkilerde bulunurken minerolojik bileşimlerini belirgin ölçüde değiştirmiştir.

ISITMANIN ORMAN TOPRAKLARININ BAZI FİZİKSEL, KİMYASAL VE MİNEROLOJİK ÖZELLİKLERİNE ETKİSİ

The objective of this research was to determine the effects of heating at different temperatures on physical, chemical and mineralogical aspects of forest soils taken from Gallipoli Historical National Park. Soil samples were kept in a muffle furnace at different temperatures (25, 100, 200, 300, 400 and 500 °C). Soil heating lowered clay and silt contents and at some temperatures partially decreased the contents of pH, lime, total nitrogen (N), exchangeable calcium (Ca), magnesium (Mg), sodium (Na), and cation exchange capacity (CEC). It, however, caused on increase in sand, aggregate stability, electrical conductivity and a partial increase in exchangeable K, available phosphorus (P) and loss on ignition at some temperatures. Heating had different effects on soil color value and chroma while changing minerological components considerably.

___

  • ○ Akman, Y. and Ekim, T. 1988. Gelibolu Tarihi Milli Parkı Vejetasyonu. Doğa Türk Botanik Dergisi 12, 105-115.
  • ○ Altınbaş, Ü. 1982. A study of the some properties of the raw material used in the ceramic industry at different temperatures. Review of the Faculty of Agriculture, University of Ege 460, 1- 40.
  • ○ Anonymous 2004. Çanakkale province meteorological survey station records (unpublished), Çanakkale (In Turkish).
  • ○ Auld, T. D. and Denham, A. J. 2006. How much seed remains in the soil after a fire? Plant Ecol. 187, 15-24.
  • ○ Chandler, C., Cheney, P., Thomas, L. and Williams, D. 1983. Fire in foresty, Vol 1. Forest fire behaviour and effects. John Wiley& Sons, New York.
  • ○ Fernandez, I., Cabaneiro, A. and Carballas, T. 1997. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry 29, 1-11.
  • ○ Gee, G. W. and Bauder, J. W. 1986. Particle-size analysis. In: Klute, A. (Ed.) Methods of Soil Analysis, Part I: Physical and Mineralogy Methods, 2nd ed. (SSSA Book Series No. 5), Madison, Wisc.: Soil Science Society of America and American Society of Agronomy, pp. 383–411.
  • ○ Ghuman, B.S. and Lal, R. 1989. Soil temperatures effects of biomass burning in windrows after clearing a tropical rainforest. Field Crop Research 22, 1-10.
  • ○ Giovannini, G. and Lucchesi, S. 1997. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Sci. 162, 479-486.
  • ○ Giovannini, G., Lucchesi, S. and Giachetti, M. 1988. Effect of heating on some physical and chemical parameters related to soil fertility and plant growth. Soil Sci. 146, 255-261.
  • ○ Giovannini, G., Lucchesi, S. and Giachetti, M. 1990. Effect of heating on some chemical parameters related to soil aggregation and erodibility. Soil Sci. 149, 344-350.
  • ○ Güvensen, A., Uysal, İ., Çelik, S. and Öztürk, M. 2007. The post–fire soil characteristics of Gallipoli Historical National Park- Turkey. In: International Conference on Environment: Survival and Sustainability, 19-24 February 2007. Nicosia – Northern Cyprus.
  • ○ Hoinka, K. P., Carvalho, A. and Miranda, A. I. 2009. Regional-scale weather patterns and wildland fires in central Portugal. Int. J. Wildland Fire 18, 36-49.
  • ○ Kasischke, E. S., Christensen, N. L. and Stocks, B. J. 1995. Fire, global warming, and the carbon balance of boreal forest. Ecol. Appl. 5, 437-451.
  • ○ Kemper, W. D. and Rosenau, R. C. 1986. Aggregate stability and size distribution. In: Klute, A. (Ed.) Methods of Soil Analysis, Part I: Physical and Mineralogy Methods, 2nd ed. (SSSA Book Series No. 5), Madison, Wisc.: Soil Science Society of America and American Society of Agronomy, pp. 425-442.
  • ○ Ketterings, Q. M., Bigham, J. M. and Laperrche, V. 2000. Changes in soil mineralogy and texture caused by slash and burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1108-1117.
  • ○ Laughlin, D. C., Bakker, J. D., Stoddard, M. T., Daniels, M. L., Springer, J. D., Gildar, C. N., Green, A. M. and Covington, W. 2004. Toward references conditions: Wildfire effects on flora in an old- growth ponderosa pine forest. Forest Ecol. Manag. 119, 137-142.
  • ○ Marcos, E., Tarrega, R. and Luis, E. 2007. Changes in a Humic Cambisol heated (100-500 °C) under laboratory conditions: The significance of heating time. Geoderma 138: 237-243.
  • ○ Mataix-Solera, J. V., Arcenegui, C., Guerrero, M. M., Jordan, P., Dlapa, N., Tessler, L. and Wittenberg, L. 2008. Can terra rossa become water repellent by burning? A laboratory approach. Geoderma 147, 178-184.
  • ○ Mclean, E. O. 1982. Soil pH and lime requirement. In: Page, A. L., Miller, R. H. and Keeney, D. R. (Eds) Methods of Soil Analysis, part II: Chemical and Microbiological Properties, 2nd ed. (SSSA Book Series No. 5), Madison, Wisc.: Soil Science Society of America and American Society of Agronomy. pp. 199–223.
  • ○ Moreno, J. M. and Oechel, W. C. 1991. Fire intensity effects on germination of shrubs and herbs in southern California Chaparral. Ecology 72, 1993-2004.
  • ○ Nelson, D. W. and Sommers, L. E. 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D. L. (Ed.) Methods of Soil Analysis, Part III: Chemical Methods , 2nd ed. (SSSA Book Series No. 9). Madison, Wisc.: Soil Science Society of America and American Society of Agronomy. pp. 961-1010.
  • ○ Nelson, R. E. 1982. Carbonate and gypsum. In: Page, A. L., Miller, R. H. and Keeney, D. R. (Eds.) Methods of Soil Analysis, part II: Chemical and Microbiological Properties, 2nd ed. (SSSA Book Series No. 5), Madison, Wisc.: Soil Science Society of America and American Society of Agronomy. pp. 181–198.
  • ○ Olsen, S. R. and Sommers, L. E. 1982. Phosphorus. In: Page, A. L., Miller, R. H. and Keeney, D. R. (Eds.) Methods of Soil Analysis, part II: Chemical and Microbiological Properties, 2nd ed. (SSSA Book Series No. 5), Madison, Wisc.: Soil Science Society of America and American Society of Agronomy. pp. 403-430.
  • ○ Quintana, J. R., Cala, V., Moreno, A. M. and Para, J. G. 2007. Effect of heating on mineral components of the soil organic horizon from a Spanish juniper (Juniperus thurifera L.) woodland. J. Arid Environ. 71, 45-56.
  • ○ Radho-Toly, S., Majer, J. D. and Yates, C. 2001. Impact of fire on leaf nutrients, arthropod fauna and herbivory of native and exotics eucalypts in Kings Park, Petrh, Western Australia. Australia Ecol. 26, 500-506.
  • ○ Rhoades, J. D. 1982a. Cation exchange capacity. In: Page, A. L., Miller, R. H. and Keeney, D. R. (Eds.) Methods of Soil Analysis, Part II: Chemical and Microbiological Properties, 2nd ed. (SSSA Book Series No. 5), Madison, Wisc.: Soil Science Society of America and American Society of Agronomy. pp. 149-158.
  • ○ Rhoades, J. D. 1982b. Soluble salts. In: Page, A. L., Miller, R. H. and Keeney, D. R. (Eds.) Methods of Soil Analysis, Part II: Chemical and Microbiological Properties, 2nd ed. (SSSA Book Series No. 5), Madison, Wisc.: Soil Science Society of America and American Society of Agronomy. pp. 167-179.
  • ○ Russell, K. R., Van Lear, D. H. and Guynn, D. C. 1999. Prescribed fire effects on herpetofauna: Review and management implications. Wildfire Soc. Bulletin 27, 374-384.
  • ○ Sertsu, S. M. and Sanchez, P. A. 1978. Effects of heating on some changes in soil properties in relation to an Ethiopian land management practice. Soil Sci. Soc. Am. J. 42, 940-944.
  • ○ Shakesby, R. A. and Doerr, S. H. 2006. Wildfire as a hydrological and geomorphological agent. Earth-Sci Rev. 74, 269-307.
  • ○ Terefe, T., Mariscal-Sancho, I., Peregrina, F. and Espejo, R. 2008. Influence of heating on various properties of six Mediterranean soils: A laboratory study. Geoderma 143, 273-280.
  • ○ Thomas, G. W. 1982. Exchangeable cations. Page, A. L., Miller, R. H. and Keeney, D. R. (Eds.) Methods of Soil Analysis, Part II: Chemical and Microbiological Properties, 2nd ed. (SSSA Book Series No. 5), Madison, Wisc.: Soil Science Society of America and American Society of Agronomy. In: pp. 159–166.
  • ○ Turner, M. G., Hargrove, W. W., Gardner, R. H. and Romme, W. H. 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 5, 731-742.
  • ○ Ulery, A. L. and Graham, R. C. 1993. Forest fire effects on soil color and texture. Soil Sci. Soc. Am. J. 57, 135-140.
  • ○ Whitting, L. D. 1965. X-ray diffraction techniques for mineral identification and mineralogical composition. In: Black, C. A. (Ed.) Methods of Soil Analysis, Part 1. Physical and Mineralogical Properties (SSSA Book Series No. 5). Madison, Wisc.: Soil Science Society of America and American Society of Agronomy. pp. 671-698.
Bartın Orman Fakültesi Dergisi-Cover
  • ISSN: 1302-0943
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1998
  • Yayıncı: Bartın Üniversitesi Orman Fakültesi