Silika destekli Ni(II)-salisilaldimin kompleksinin sentezi, karakterizasyonu ve hidrojen üretimindeki katalitik etkisinin incelenmesi

Silika destekli Ni(II)-Schiff Bazı kompleksinin hazırlanması amacıyla, daha önceki çalışmamızda sentezlenen [1] Ni(II)-Schiff Bazı Kompleksi, SiO2 üzerine tutturularak SiO2 destekli Ni(II)-Schiff Bazı kompleksi elde edildi.  Hazırlanan bu SiO2 destekli kompleks, katalitik aktivitesine bakılmak üzere hidrojen üretim için NaBH4’ün hidroliz reaksiyonunda katalizör olarak kullanıldı. Hazırlanan bu katalizörün yapısı FT-IR, SEM, XRD, BET analizi gibi spektroskopik yöntemlerle aydınlatıldı.  SiO2 destekli Ni(II)-Schiff Bazı kompleksinin katalizör olarak kullanıldığı NaBH4’ün hidroliz reaksiyonu; NaOH ve NaBH4 konsantrasyonuna, katalizör miktarına, SiO2 destekli Ni(II)-Schiff Bazı kompleks katalizörünün içerisinde bulunan Ni (II)-Schiff Bazı kompleksinin yüzdesine ve sıcaklığa bağlı olarak incelendi.  NaBH4’ün hidroliz reaksiyonuna ait maksimum reaksiyon hızı (R0)  13005 mL H2 g-1 kat. dk-1, reaksiyonun aktivasyon enerjisi (Ea) ise 16,633 kJ/mol olarak, reaksiyon hız mertebesi n ise 0,3 olarak hesaplanmıştır. 

Investigation of synthesis, characterization and catalytic effect on hydrogen production of silica supported-Ni(II)-salicylaldimine complex

For preparing SiO2 supported Ni (II)-Schiff Base complex,  Ni (II)-Schiff Base complex, which was synthesized in our previous work, was used and supported on SiO2.  This SiO2 supported complex was used as a catalyst in hydrolysis reaction of NaBH4 for hydrogen production, to look at its catalytic activity. The structure of this prepared catalyst was illuminated by spectroscopic methods such as FT-IR, SEM, XRD, BET analysis.  The SiO2 supported Ni(II)-Schiff complex catalyzed hydrolysis reaction was investigated depending on the concentration of NaOH and NaBH4, amount of catalyst percentage of Ni (II) -Schiffe complex in the SiO2 supported Ni (II)-Schiff complex complex catalyst and the temperature.  The maximum reaction rate (R0) for the hydrolysis reaction of NaBH4 is 13005 mL H2 g -1. min, the activation energy of the reaction (Ea) is 16,633 kJ/mol, and the reaction rate n is 0.3.

___

  • Kilinc, D., Sahin, O., Saka, C., Investigation on salisylaldimine-Ni complex catalyst as an alternative to increasing the performance of catalytic hydrolysis of sodium borohydride, International Journal of Hydrogen Energy, 42, 20625-20637 (2017).
  • Dicks, A.L., Hydrogen generation from natural gas for the fuel cell systems of tomorrow, Journal of Power Sources, 61, 113-124, (1996).
  • Kilinc, D., Saka, C., Sahin, O., Hydrogen generation from catalytic hydrolysis of sodium borohydride by a novel Co(II)–Cu(II) based complex catalyst, Journal of Power Sources, 217, 256-261, (2012).
  • Schuth, F., Bogdanovic, B., Felderhoff, M., Light metal hydrides and complex hydrides for hydrogen storage, Chemical Communication 20, 2249–2258, (2004).
  • Muir, S.S., Yao, X., Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction systems, International Journal of Hydrogen Energy, 35, 5983-97, (2011).
  • Shang, Y., Chen, R., Hydrogen storage via the hydrolysis of NaBH4 basic solution: optimization of NaBH4 concentration, Energy Fuels, 20, 2142-2148, (2006).
  • Chew WM, Ayers OE, Murfree JA, Martignoni P. Solid propellants for generating hydrogen, US patent no: 4,061,512, (1977).
  • Kojima Y, Haga T. Recycling process of sodium metaborate to sodium borohydride, International Journal of Hydrogen Energy, 28, 9, 989–93, (2003).
  • Ay M, Midilli A, Dince I. Investigation of hydrogen production from boron compounds for pem fuel cells, Journal of Power Sources 157, 104–113, (2006).
  • Mazur DJ, Weinberg NL, Guibault LJ, Chin AA, Tomantschger K. One-step electrosynthesis of borohydride, US patent application no: 20050224365, (2005).
  • Minkina, V., Shabunya, S., Kalinin, V., Martynenko, V., Smirnova, A., Long-term stability of sodium borohydrides for hydrogen generation, International Journal of Hydrogen Energy, 33, 5629-5635, (2008).
  • Demirci, U.B., Akdim, O., Andrieux, J., Hannauer, J., Chamoun, R., Miele, P., Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell, Fuel Cells, 10, 335-350, (2010).
  • Santos, D.M.F., Sequeira, C.A., Sodium borohydride as a fuel for the future, Renewable Sustainable Energy Review, 15, 3980-4001, (2011).
  • Kim, T., NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane), Fuel Cell, Energy, 69, 721-727, (2014).
  • Galli, S., De Francesco, M., Monteleone, G., Oronzio, R., Pozio, A., Development of a compact hydrogen generator from sodium borohydride, International Journal of Hydrogen Energy, 35, 7344-7349, (2010).
  • Kojima, Y., Suzuki, K., Fukumoto, K, Kawai, Y., Kimbara, M., Nakanishi, H., et al., Development of 10 kW-scale hydrogen generator using chemical hydride, Journal of Power Sources, 125, 22-26, (2004).
  • Zhang, J., Zheng, Y., Gore, J.P., Mudawar, I., Fisher, T.S., Sodium borohydride hydrogen generation system: part II: reactor modeling, Journal of Power Sources, 170, 150-159, (2007).
  • Shurtleff, K., Ladd,E., Patton, J., Brydon, C., Pearson, K., System for generating hydrogen from a chemical hydride, United States Patent, 7651542 B2-(2010).
  • Oronzio, R., Monteleone, G., Pozio, A., De Francesco, M., Galli, S., New reactor design for catalytic sodium borohydride hydrolysis, International Journal of Hydrogen Energy, 34, 455-460, (2009).
  • Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Kelly, M.T., Petillo, P.J., Binder, M., An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst, Journal of Power Sources, 85, 186-189, (2000).
  • Kong, V.C.Y., Foulkes, F.R., Kirk, D.W., Hinatsu, J.T., Development of hydrogen storage for fuel cellgenerators: Hydrogen generation using hydrolysishydrides, International Journal of Hydrogen Energy, 24, 665–675, (1999).
  • Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen, Journal of American Chemical Society, 75, 215–219, (1953).
  • Suda, S., Sun, Y. M., Liu, B. H., Zhou, Y., Morimitsu, S., Arai, K., Tsukamoto, N., Uchida, M., Candra, Y. & Li, Z. P., Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts, Applied Physics A, 72, 209-212, (2001).
  • Larichev, Y. V., Netskina, O. V., Komova, O. V., Simagina, V. I., Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts for NaBH4 hydrolysis, International Journal of Hydrogen Energy, 35, 6501–6507, (2010).
  • Dongyan, X., Huamin, Z., Wei, Y., Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/ C, Catalysis Communications, 8, 1767-1771, (2007).
  • Li, Q., Chen, Y., Lee, D.J., Li, F., Kim, H., Preparation of Y-zeolite/ CoCl2 doped PVDF composite nanofiber and its application in hydrogen production, Energy, 38, 144-150, (2012).
  • Sahin, O., Saka, C., Baytar, O., Hansu, F., Influence of plasma treatment on electrochemical activity of Ni (0)-based catalyst for hydrogen production by hydrolysis of NaBH4, Journal of Power Sources, 240, 729-735, (2013).
  • Sahin, O., Kilinc, D., Saka, C., Bimetallic Co–Ni based complex catalyst for hydrogen production by catalytic hydrolysis of sodium borohydride with an alternative approach, Journal of Energy Institute, 89, 617-626, (2016).
  • Walter, J.C., Zurawski, A., Montgomery, D., Thornburg, M., and Revankar, S., Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts, Journal of Power Sources, 179, 335–339, (2008).
  • Ulusoy, M., Sahin, O., Buyukgungor, O., Cetinkaya B., Imidazolium salicylaldimine frameworks for the preparation of tridentate N-heterocyclic carbene ligands, Journal of Organomet Chemistry, 693, 1895-1902, (2008).
  • Kurup, M.R.P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S.R., Suresh, E.,Synthesis, spectral characterization and crystal structure of copper (II) complexes of 2-benzoylpyridine-N4-phenylsemicarbazone, Polyhedron, 30, 70-78 (2011).