Harmonik bozulma şartlarında transformatör yüklenme kapasitesinin maksimizasyonu için pasif filtre tasarımı

Günümüzde, endüstriyel tesislerin bulunduğu dağıtım sistemlerinde harmonik bozulmaya sahip akım çeken güç elektroniği temelli yükler yaygın olarak kullanılmaktadır. Dolayısıyla, bu sistemlerde hat akımları ve bara gerilimleri yüksek değerlerde harmonik bozulmaya sahiptir. Harmoniklerin, güç sistem elemanlarında kayıp artışı, güç faktöründe düşüş, dönen elektrik makinalarında moment dalgalanmaları ile ölçüm ve koruma elemanlarının hatalı çalışması gibi olumsuz etkilere sebep olduğu literatürde bilinmektedir. Bu olumsuz etkileri azaltmak amacıyla harmonik bozulmayı iyileştiren pasif ve aktif filtreler tüketiciler ve enerji servis sağlayıcılar tarafından yaygın olarak uygulanmaktadır. Pasif filtrelerin tasarımında geleneksel olarak, her bir harmonik ve toplam harmonik bozulma seviyelerini ve güç faktörünü uluslararası standartlarda tavsiye edilen aralıklarda tutmanın yanı sıra akım ve/veya gerilim toplam harmonik bozulma indislerinin minimizasyonu, güç faktörünün maksimizasyonu, filtre maliyeti ve kayıplarının minimizasyonu amaçlanmıştır. Diğer taraftan, literatürdeki yeni çalışmalar, pasif filtreleri, geleneksel harmonik bozulma ve güç faktörü kısıtlarını dikkate alarak, transformatörlerin harmonik bozulma şartlarında yüklenme kapasitesini maksimize etmek amacıyla tasarlamıştır. Bu çalışmada, öncelikle, harmonik bozulmaya sahip tipik bir endüstriyel güç sistemi için transformatör yüklenme kapasitesinin maksimizasyonunu amaçlayan optimal C tipi pasif filtre tasarım probleminin çözümünde, büyük patlama büyük çöküntü, karınca aslanı optimizasyon ve yusufçuk optimizasyon algoritmaları sonuç ve hız bakımından karşılaştırmalı olarak analiz edilmiştir. Daha sonra, tasarlanan optimal pasif filtrenin performansı, kaynağa ait toplam gerilim harmonik bozulmanın, hat empedansı genliğinin ve hat empedansı X/R oranının değişkenlik gösterdiği durumlar için analiz edilmiştir.

Passive filter design to maximize loading capacity of transformers under harmonically distorted conditions

Today, power electronic-based loads, which draw harmonically distorted currents, are widely used in the industrial distribution systems. Thus, line currents and bus voltages have high harmonic distortion levels. It is known in the literature that harmonics cause adverse effects such as loss increase in power system equipment, decrease of power factor, torque pulsations in rotating electric machines, malfunction of measurement and protection devices. Accordingly, to reduce these adverse effects, harmonic mitigation devices as passive and active filters are widely employed by consumers and utilities. For designing passive filters, it is conventionally aimed to achieve different goals as minimization of current and / or voltage total harmonic distortion, power factor maximization and minimization of filter cost and losses while keeping individual / total harmonic distortion levels and power factor in the recommended intervals defined by international standards. On the other hand, recent studies in the literature have designed optimal passive filters to maximize transformer’s loading capacity under harmonic distortion conditions while considering conventional optimal passive filter design constraints. In this study, firstly, for the solution of the optimal C-type passive filter design problem, which aims to maximize the loading capacity of the transformer in a typical industrial power system with harmonic distortion, the big bang big crunch, ant lion optimization and dragonfly optimization algorithms was comparatively evaluated in terms of their results and speed. And then, the performance of the designed optimal passive filter was analysed for the cases where the total harmonic distortion of the source, line impedance’s magnitude, and line impedance’s X/R ratio change.

___

  • Singh, G. K., Power system harmonics research: a survey, European Transactions on Electrical Power, 19, 2, 151 -172, (2007).
  • Abdul Kadir, A.F., Mohamed, A. ve Shareef, H., Harmonic impact of different distributed generation units on low voltage distribution system, 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, 1201-1206, (2011).
  • Fuchs, E.W. ve Masoum, M.A.S., Power quality in power systems and electrical machines, Elsevier Academic Press, MA, USA, (2008).
  • Srividhya, J.P., Sivakumar, D. ve Shanmathi, T., A review on causes, effects and detection techniques of harmonics in the power system, IEEE International Conference on Computation of Power, Energy Information and Commuincation, 680-686, Chennai, India, (2016).
  • Peng, F.Z., Harmonic sources and filtering approaches, IEEE Transactions on Industry Applications Magazine, 7, 4, 18-25, (2001).
  • Motta, L. ve Faúndes, N., Active / passive harmonic filters: applications, challenges & trends, 17th International Conference on Harmonics and Quality of Power (ICHQP), Belo Horizonte, 657-662, (2016).
  • Badrzadeh, B., Smith, K. S. ve Wilson, R. C., Designing passive harmonic filters for an aluminum smelting plant, IEEE Transactions on Industry Applications, 47, 2, 973-983, (2011).
  • Badrzadeh, B. ve Gupta, M., Practical experiences and mitigation methods of harmonics in wind power plants, IEEE Transactions on Industry Applications, 49, 5, 2279-2289, (2013).
  • Dekka, A., Beig, A.R., Kanukollu, S. ve Al Rahis, M.S., Retrofitting of harmonic power filters in onshore oil drilling rigs: challenges and solutions, IEEE Transactions on Industry Applications, 50, 1, 142-154, (2014).
  • Das, J. C., Power system harmonics and passive filter designs, IEEE Press, (2015).
  • Karadeniz, A. ve Balci, M.E., Comparative evaluation of common passive filter types regarding maximization of transformer’s loading capability under non-sinusoidal conditions, Electric Power Systems Research, 158, 324-334, (2018).
  • Abdel Aleem, S. H. E., Zobaa, A. F. ve Balci, M. E., Optimal resonance-free third-order high-pass filters based on minimization of the total cost of the filters using Crow Search Algorithm, Electric Power Systems Research, 151, 381-394, (2017).
  • Zeineldin, H.H. ve Zobaa, A.F., Particle swarm optimization of passive filters for industrial plants in distribution networks, Electric Power Components and Systems, 39, 16, 1795–1808, (2011).
  • Balci, M.E. ve Karacaoglan, A.D., Optimal design of c-type passive filters based on response surface methodology for typical industrial power systems, Electric Power Systems Research, 41, 7, 653-668, (2013).
  • Churio-Barboza, J.C. ve Maza-Ortega, J.M., Comprehensive design methodology of tuned passive filters based on a probabilistic approach, IET Generation, Transmission & Distribution, 8, 1, 170-177, (2014).
  • IEEE 519, IEEE recommended practices and requirements for harmonic control in electrical power systems, IEEE Standardı, (2014).
  • Sakar, S., Balci, M. E., Abdel Aleem, S. H. E. ve Zobaa, A. F., Increasing pv hosting capacity in distorted distribution systems using passive harmonic filtering, Electric Power Systems Research, 148, 74–86, (2017).
  • Sakar, S., Balci, M. E., Abdel Aleem, S. H. E. ve Zobaa, Integration of large- scale pv plants in non-sinusoidal environments: considerations on hosting capacity and harmonic distortion limits, Renewable and Sustainable Energy Reviews, 82, 1, 176-186, (2018).
  • Heydt, C.T. ve Jewell, W.T., Pitfalls of electric power quality indices, IEEE Transactions on Power Delivery, 13, 2, 570-578, (1998).
  • ANSI/IEEE C.57.110-2008, IEEE recommended practice for establishing transformer capability when supplying nonsinusoidal load currents, IEEE Standardı, (2008).
  • Balci, M.E. ve Sakar, S., Optimal design of single-tuned passive filters to minimize harmonic loss factor, Middle-East Journal of Scientific Research, 21, 11, 2149–2155, (2014).
  • Balci, M.E., Optimal c-type filter design to maximize transformer’s loading capability under non-sinusoidal conditions, Electric Power Components and Systems, 42, 14, 1565–1575, (2014).
  • Erol O.K. ve Eksin I., A new optimization method: big bang–big crunch, Advances in Engineering Software, 37, 2, 106-111, (2006).
  • Mirjalili, S., The ant lion optimizer, Advances in Engineering Software, 83, 80-98, (2015).
  • Mirjalili, S., Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications., 27, 4, 1053-1073, (2016).
  • IEEE Task Force Harmonic Modeling and Simulation, Modeling and simulation of the propagation of harmonics in electric power networks part I: concepts, models and simulation techniques, IEEE Transactions on Power Delivery, 11, 1, 452-465, (1996).
  • McGranaghan, M.F., Dugan, R.C., King, J.A. ve Jewell, W.T., Distribution feeder harmonic study methodology, IEEE Transactions on Power Apparatus Systems, PAS-103, 12, 3663–3671, (1984).
  • Xu, W., Component modeling issues for power quality assessment, IEEE Power Engineering Review, 21, 11, 12-17, (2001).
  • Arslan, E., Balci, M.E. ve Hocaoglu M.H., An analysis into the effect of voltage harmonics on the maximum loading capability of transformers, 16th Int. Conf. on Harmonics and Quality of Power, 616-620, Bucharest, Romania, (2014).
  • Bishop M. T., Baranowski J. F., Heath D. ve Benna S. J., Evaluating harmonic-induced transformer heating, IEEE Transactions on Power Delivery, 10, 1, 305 -310, (1996).
  • Elmoudi A., Lehtonen M. ve Nordman H., Effect of harmonics on transformers loss of life, Proc. of IEEE Int. Symp. Elect. Insul. Conf. Rec., 408 -411, (2006).
  • Shareghi M., Phung B. T., Naderi M. S., Blackburn T. R. ve Ambikairajah E., Effects of current and voltage harmonics on distribution transformer losses, International Conf. on Condition Monitoring and Diagnosis (CMD) 2012, 633-636, (2012).
  • Soh T. L. G., Said D. M., Ahmad N., Nor K. M. ve Salim F., Experimental study on the impact of harmonics on transformer, IEEE 7th Int. Power Eng. and Optimization Conf. (PEOCO), 686-690, (2013).
  • Katırcıoğlu, F., Renkli görüntüler için yusufçuk algoritması kullanılarak benzerlik görüntüsüne dayalı eşikleme, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 5, 506-523, (2017).