Titreşim Altında Yüksek Doğruluklu Sıvı Seviyesi Ölçümü için ARM Tabanlı Melez Ölçüm Sistemi Tasarımı

Bu çalışmada aktüatörlerin çalışmaları sırasında ürettiği mekanik titreşimler altındaki sıvı tanklarında, sıvı seviyesini hata oranı en fazla %1 olacak şekilde bir doğruluk ve çözünürlükle ölçebilen 32-bit ARM mikrodenetleyici tabanlı ölçüm sisteminin tasarım ve gerçeklemesi yapılmaktadır. Tank içinde bulunan sıvıya herhangi bir ölçüm maddesi veya cihazı eklemeden sıvı seviyesi temassız ölçülerek kullanılan algılayıcının zamanla ölçüm hassasiyetini kaybetmesi ve bundan dolayı ölçümlerin hatalı sonuçlar vermesinin önlenilebilmesi amaçlanmaktadır. Ölçüm sistemi, ultrasonik, sıcaklık ve nem sensörlerinin melez biçimde kullanılmasıyla oluşturulup geleneksel temaslı sıvı seviye ölçüm yöntemlerinin aksine tank içindeki yakıt, kimyasal çözeltiler gibi temassız sıvıların seviyesini ölçebilmekte, farklı boyut ve şekillerdeki sıvı tanklarına da kolayca uyarlanabilmektedir. Ultrasonik algılayıcıdan gönderilen ses dalgalarının tank içerisindeki hızı, sıcaklık ve nem ile değişebileceğinden ses dalgalarının gerçek hızının ölçülebilmesi için sıcaklık, nem algılayıcılarından alınan ölçüm değerleri de göz önüne alınarak sıvı seviyesi hesaplanmaktadır. Böylece, ultrasonik, sıcaklık ve nem algılayıcılarından oluşan bu melez algılayıcı kullanılarak sıvı seviyesi ölçümünün doğruluğu arttırılmaktadır. Düşük, orta ve yüksek olarak 3 farklı titreşim şiddetinde sıvı seviyesi ölçülmektedir ve bu mekanik titreşimlerden kaynaklanabilecek ölçüm hatası ise medyan filtrenin farklı iterasyonları kullanılarak azaltılıp geriye kalan ölçüm hatası ise sıvı seviyesi ölçümü, tankın titreşim şiddeti verilerinin bir regresyon analizinde kullanılmasıyla giderilmektedir. Nihai elde edilen sıvı seviye ölçüm sonucu 32-bit ARM mikrodenetleyiciden bir Wi-Fi modül aracılığıyla kablosuz şekilde bir Android uygulamasına aktarılarak takibi yapılabilmektedir.

ARM Based Hybrid Measurement System Design for Liquid Level Measurement with High Accuracy under Vibrating Case

In this study, the design and implementation of a 32-bit ARM microcontroller based measurement system which can measure the liquid level with an accuracy and resolution that have maximum 1% error level in liquid tanks under the mechanical vibrations produced by the actuators during their work is realized. It is aimed to prevent losses of sensor’s measurement accuracy over time and so preventing the erroneous results of the measurements by measuring the liquid level without contact and without adding any measuring material or device to the liquid in the tank. The measurement system is created by using hybrid method of ultrasonic, temperature and humidity sensors, and unlike conventional tactile liquid level measurement methods, it can measure the level of non-contact liquids such as fuel, chemical solutions, and it might be easily adapted to liquid tanks of different sizes and shapes. Since the of the sound waves sent from the ultrasonic sensor can change with the temperature and humidity, for calculation of the actual speed of the sound waves, taking the measurement data obtained from temperature, humidity sensors into consideration. Thus, the accuracy of liquid level measurement is increased by using this hybrid sensor consisting of ultrasonic, temperature and humidity sensors. Liquid levels are measured in 3 different vibration intensity as low, medium and high, respectively and the measurement error that might be caused by mechanical vibrations is reduced by using different iterations of the median filter, and the remaining measurement error is eliminated by using data such as liquid level measurement and liquid tank vibration intensity in a regression analysis. The final liquid level measurement result after regression model is transferred from 32-bit ARM based microcontroller to an android application via a Wi-Fi module wirelessly.

___

  • Akyıldız H., Ünal N.E., Bağcı T. (2012). Experimental Investigation of the Liquid Sloshing in a Rigid Cylindrical Tank. İMO Teknik Dergi, 6089-6112.
  • TR Ministry of Education. (2009). Public policy in Turkey: Industrial automation technologies, Level measurement.
  • Xu, W., Wang, J., Zhao, J., Zhang, C., Shi, J., Yang, X., Ya, J . (2017). Reflective Liquid Level Sensor Based on Parallel Connection of Cascaded FBG and SNCS Structure. IEEE Sensors Journal, 17(5), 1347-1352.
  • Priya, K.P., Surekha, M., Preethi, R., Devika, T., Dhivya, N. (2014). Smart gas cylinder using embedded system. Int. J. Innovative Res. Electr. Electron. Instrum. Control Eng. 2 (2), 958-962.
  • Morris, A.S., Langari, R. (2012). Measurement and Instrumentation: Theory and Application. Academic Press, United State.
  • Gillum, D. R. (2009). Industrial Pressure, Level, and Density Measurement. 2nd ed., Instrumentation, Systems, and Automation Society, USA, 571s.
  • Fraden, J. (2010). Handbook of Modern Sensors, Physics, Designs and Applications. 3rd ed., Springer-Verlag, New York, 589s.
  • Dogan, I. (2015). Development of a Low-Cost Educational Liquid-Level Sensor Circuit. International Journal of Electrical Engineering Education, 52(2), 168-181.
  • Antunes, P., Dias, J., Paixão, T. (2015). Esequiel Mesquita, Humberto Varum, Paulo André, Liquid Level Gauge Based in Plastic Optical Fiber. Measurement, 66,238-243.
  • Shin, H.C., Wu, H.P. (2010). Liquid level detection of the sealed gas tank based on digital signal processing. In: Proceeding of Image and Signal Processing (CISP), 3rd International Congress.
  • M. Toghyani R., M.H.S Abadi (2017). Analytical modeling of a coaxial cylindrical probe capacitive sensor based on MATLAB/Simulink for conductive liquids level measurements.
  • Singh, H.K., Chakroborty, S.K., Talukdar, H., Singh, N.M., Bezboruah, T. (2011). A new non-intructive optical technique to measure transparent liquid level and volume. Sens. J. 11 (2), 391-398.
  • Terzic, E., Nagarajah, C. R., Alamgir, M. (2010). Capacitive Sensor-Based Fluid Level Measurement in a Dynamic Environment Using Neural Network. Engineering Applications of Artificial Intelligence, 23(4), 614-619.
  • Canbolat, H. (2009). A Novel Level Measurement Technique Using Three Capacitive Sensors for Liquids. IEEE Transactions on Instrumentation and Measurement, 5 8(10), 3762-3768.
  • Altın, S., Bulut, F. (2016). Design of Ultrasonic Liquid Level Meter with Bluetooth Connection and Industrial Process Application. Journal of Bartin University Engineering and Technological Sciences, 4(1), 19-21.
  • Varun Kumar, S., Yokeshraj, P.V., Vignesh, V., T amilselvan, S. (2018). Precision Level Measurement with Real Time Monitoring For Dynamically Changing Depths in a Container. International Research Journal of Engineering and Technology (IRJET), 5(1) , 1512-1514.
  • Jin, B., Liu, X., Bai, Q., Wang, D., Wang, Y. (2015). Design and Implementation of an Intrinsically Safe Liquid-Level Sensor Using Coaxial Cable.Sensors, 15(6), 12613-12634.
  • Raj, B., Jayakumar, T., Thavasimuthu, M. (2002). Practical Non Destructive Testing, first ed. Elsevier, United Kingdom.
  • Cheeke, J.D.N. (2012). Fundamentals and Applications of Ultrasonic Waves, second ed. Taylor & Francis, United State.
  • Bies, D.A.; Hansen, C.H. (2009). Engineering Noise Control - Theory and Practice, 4th Edition. New York: CRC Press. pp. 18–19. ISBN 978-0-415-48707-8.
  • Panigrahy, P.K., Saka, U.K., Maity, D. (2009). Experimental studies on sloshing behior due to horizontal movement of liquids in baffled tanks. Ocean Engineering. 36(3-4). 312-222.
  • Arduino. (2020). [online] Available: https://store.arduino.cc/usa/due.
  • Brian Benchoff (2014). "The Current State of ESP8266 Development". Hackaday. Retrieved 2015-06-24.
  • Mathworks. (2020). [online] Available: https://www.mathworks.com/help/signal/ref/medfilt1.html.
  • David A. Freedman (2009). Statistical Models: Theory and Practice. Cambridge University Press. ISBN 978-1-139-47731-4.
  • Blynk. (2020), [online] Available: https://docs.blynk.cc.
  • Stephen Wolfram. (1999). The Mathematica Book, Version 4.
  • Draper, N. R.; Smith, H. (1998). Applied Regression Analysis. Wiley-Interscience. ISBN 978-0-471-17082-2.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

Kesintisiz Güç Kaynağı için Uzaktan İzlemeyi Sağlayan Veri Paylaşım Modül Tasarımı ve Regresyon Modelleri ile Akü Ömrü Tahmini

Metehan AVKIRAN, Vedat GÜL, Savaş ŞAHİN, İbrahim TANAĞARDIGİL

Parallel Implenetation of the GPR Techniques for Detecting and Mapping Ancient Buildings by Using CUDA

M. Cihat MUMCU, Salih BAYAR

Bulanık Bilişsel Harita Tabanlı PID Kontrolör Tasarımı

Aykut DENİZCİ, Cenk ULU

Çok Kriterli Ürün-Tabanlı İşbirlikçi Filtrelemede Ağırlıklandırma Yöntemlerini Kullanarak Tahmin Performansının Arttırılması

Emre SADIKOĞLU, Burcu DEMİRELLİ OKKALIOĞLU

Sentetik ve Dönüştürülmüş Konuşmaların Tespitinde Genlik ve Faz Tabanlı Spektral Özniteliklerin Kullanılması

Burak KASAPOĞLU, Turgay KOÇ

Göz Hareketlerinin Takibi ile Bilgisayar Kontrolü

Muhammed Mehdi MENTEŞ, Mustafa Mert GÜVEN, Şeyma Nur ÖZCAN, Mehmet Feyzi AKŞAHİN

Elektrikli Araç İçin Düşük Maliyetli Bir Batarya Yönetim Sistemi Tasarımı ve Gerçekleştirilmesi

Mustafa AKTAŞ, Burak BAYGÜNEŞ, Sinan KIVRAK, Barış ÇAVUŞ, Faruk SÖZEN

İç Mekanlarda Öz Lateration’nın Performansının Değişen Erişim Noktası Sayısına ve İterasyonlara Bağlı Olarak İncelenmesi

Korhan CENGİZ

Ortam Sesinden İnsan Sesinin Ayrıştırılması için Filtre Geliştirilmesi

Süleyman ÇEVEN, Raif BAYIR

Makine Bağlantı Elemanlarını Ayıklama Sistemi Geliştirilmesi

Bedirhan TUNCER, Fatih Sultan FIRIL, Seyit GÜNDOĞAN, Ali KALKANLI, Cenk ULU