Şebekeden Bağımsız Ev Tipi Uygulamaları için PCM Destekli PV/T Kollektörlerinin Deneysel Analizi

Enerji depolamalı fotovoltaik termal kollektörlerde (PV/T) güneş enerjisinin verimini incelemek için deneysel bir çalışma yapılmıştır. Hem elektrik enerjisi hem de sıcak su üretmek için bir fotovoltaik termal kollektör imal edilmiştir. PV/T kollektörlerinin eğim açısının; güç, sıcaklık, enerji ve ekserji değerlerine etkileri ile hücresel gölgelendirmenin etkileri araştırılmıştır. PV/T kollektörlerden birinin içine faz değişim malzemesi (PCM) eklenerek PV/T kollektörüyle karşılaştırılarak farklı gölgeleme koşullarının (küçük, orta ve büyük daire) PV/T kollektörünün optimum eğim açısındaki gücü ve sıcak su çıkışı üzerindeki etkisi araştırılmıştır. PV/T kollektörü ile PV/T-PCM kollektörü arasındaki sıcak su çıkışında 7 ºC sıcaklık farkı oluştuğu bulunmuştur. PV/T-PCM kollektörünün en yüksek enerji verimleri sırasıyla 25º, 30º ve 35º eğim açısı için %73,26, %84,70 ve %68,96 olarak elde edilmiştir. Gölgeli kollektörlerin en yüksek ekserji verimleri ise PV/T kollektör için % 11,92 ve PV/T-PCM kollektörü için ise %23,38 olarak bulunmuştur.

Experimental Analysis of PV/T Collectors Assisted with PCM for Off-Grid Domestic Applications

An experimental study was carried out to examine the efficiency of solar energy in photovoltaic thermal collectors (PV/T) with energy storage. A photovoltaic thermal collector was used to generate both electrical energy and hot water. The effects of inclination angle of PV/T collectors on power, temperature, energy and exergy values were investigated. Also, effects of cellular shading are tested and discussed. PV/T was compared with the conventional PV/T collector by adding phase change material (PCM) for one of the collectors. In addition, the effect of different shading conditions (small, medium and large circle) on the power and hot water output of the PV/T collector at optimum slope angle were investigated. It is found that 7 ºC temperature differences are occurred in the hot water outlet between the PV/T collector and the PV/T-PCM collector. The highest energy efficiencies of PV/T-PCM collectors are obtained as 73.26%, 84.70% and 68.96% for slope angle 25º, 30º and 35º, respectively. The highest exergy efficiencies of shaded collectors are obtained as 11.92% for PV/T and 23.38% for PV/T-PCM.

___

  • Agrawal, S., Tiwari, G.N., 2011. Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module. Solar Energy 85, 356–370. https://doi.org/10.1016/j.solener.2010.11.013
  • Al-Waeli, A.H.A., Kazem, H.A., Yousif, J.H., Chaichan, M.T., Sopian, K., 2020. Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renewable Energy 145, 963–980. https://doi.org/10.1016/j.renene.2019.06.099
  • Bayrak, F., Abu-Hamdeh, N., Alnefaie, K.A., Öztop, H.F., 2017a. A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews 74, 755–770. https://doi.org/10.1016/j.rser.2017.03.012
  • Bayrak, F., Ertürk, G., Oztop, H.F., 2017b. Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. Journal of Cleaner Production 164, 58–69. https://doi.org/10.1016/j.jclepro.2017.06.108
  • Bayrak, F., Oztop, H.F., Selimefendigil, F., 2020. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management 212, 112789. https://doi.org/10.1016/j.enconman.2020.112789
  • Bayrak, F., Oztop, H.F., Selimefendigil, F., 2019. Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Solar Energy 188, 484–494. https://doi.org/10.1016/j.solener.2019.06.036
  • Browne, M.C., Norton, B., McCormack, S.J., 2016. Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy 133, 533–548. https://doi.org/10.1016/j.solener.2016.04.024
  • Dhimish, M., Holmes, V., Mather, P., Sibley, M., 2018a. Novel hot spot mitigation technique to enhance photovoltaic solar panels output power performance. Solar Energy Materials and Solar Cells 179, 72–79. https://doi.org/10.1016/j.solmat.2018.02.019
  • Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., Mather, P., 2018b. PV output power enhancement using two mitigation techniques for hot spots and partially shaded solar cells. Electric Power Systems Research 158, 15–25. https://doi.org/10.1016/j.epsr.2018.01.002
  • Dolara, A., Lazaroiu, G.C., Leva, S., Manzolini, G., 2013. Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy 55, 466–475. https://doi.org/10.1016/j.energy.2013.04.009
  • Elsheniti, M.B., Hemedah, M.A., Sorour, M.M., El-Maghlany, W.M., 2020. Novel enhanced conduction model for predicting performance of a PV panel cooled by PCM. Energy Conversion and Management 205, 112456. https://doi.org/10.1016/j.enconman.2019.112456
  • Esen, H., 2008. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment 43, 1046–1054. https://doi.org/10.1016/j.buildenv.2007.02.016
  • Fayaz, H., Rahim, N.A., Hasanuzzaman, M., Nasrin, R., Rivai, A., 2019a. Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM. Renewable Energy 143, 827–841. https://doi.org/10.1016/j.renene.2019.05.041
  • Fayaz, H., Rahim, N.A., Hasanuzzaman, M., Rivai, A., Nasrin, R., 2019b. Numerical and outdoor real time experimental investigation of performance of PCM based PVT system. Solar Energy 179, 135–150. https://doi.org/10.1016/j.solener.2018.12.057
  • Fudholi, A., Zohri, M., Jin, G.L., Ibrahim, A., Yen, C.H., Othman, M.Y., Ruslan, M.H., Sopian, K., 2018. Energy and exergy analyses of photovoltaic thermal collector with ∇-groove. Solar Energy 159, 742–750. https://doi.org/10.1016/j.solener.2017.11.056
  • Gan, G., Xiang, Y., 2020. Experimental investigation of a photovoltaic thermal collector with energy storage for power generation, building heating and natural ventilation. Renewable Energy 150, 12–22. https://doi.org/10.1016/j.renene.2019.12.112
  • Gani, A., Açıkgöz, H., Şekkeli, M., 2020. Fotovoltaik Sistemlerde Değişken Yük ve Güneş Işınımı Altında Sinirsel-Bulanık Denetleyici ile Maksimum Güç Noktası Takibi Maximum Power Point Tracking with Neuro-Fuzzy Controller Under Variable Load and Solar Irradiance in Photovoltaic Systems 734–745. https://doi.org/10.31590/ejosat.748384
  • Hasan, A., Sarwar, J., Alnoman, H., Abdelbaqi, S., 2017. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy 146, 417–429. https://doi.org/10.1016/j.solener.2017.01.070
  • Hemmat Esfe, M., Kamyab, M.H., Valadkhani, M., 2020. Application of nanofluids and fluids in photovoltaic thermal system: An updated review. Solar Energy 199, 796–818. https://doi.org/10.1016/j.solener.2020.01.015
  • Hepbasli, A., 2008. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews 12, 593–661. https://doi.org/10.1016/j.rser.2006.10.001
  • Holman, J.P., 1994. Experimental Methods for Engineers, sixth ed. ed. McGraw-Hill.
  • Hossain, M.S., Pandey, A.K., Selvaraj, J., Abd, N., Islam, M.M., Tyagi, V. V, 2019. Two side serpentine fl ow based photovoltaic-thermal-phase change materials ( PVT-PCM ) system : Energy , exergy and economic analysis. Renewable Energy 136, 1320–1336. https://doi.org/10.1016/j.renene.2018.10.097
  • Hussain, F., Othman, M.Y.H., Yatim, B., Ruslan, H., Sopian, K., Anuar, Z., Khairuddin, S., 2015. An improved design of photovoltaic/thermal solar collector. Solar Energy 122, 885–891. https://doi.org/10.1016/j.solener.2015.10.008
  • Kayabaşı, R., Kaya, M., 2019. Fotovoltaik Modüllerin Atık Isılarından Termoelektrik Jeneratör İle Elektrik Üretimi. European Journal of Science and Technology 310–324. https://doi.org/10.31590/ejosat.562859
  • Kazemian, A., Salari, A., Hakkaki-Fard, A., Ma, T., 2019. Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material. Applied Energy 238, 734–746. https://doi.org/10.1016/j.apenergy.2019.01.103
  • Khanna, S., Reddy, K.S., Mallick, T.K., 2018. Optimization of solar photovoltaic system integrated with phase change material. Solar Energy 163, 591–599. https://doi.org/10.1016/j.solener.2018.01.002
  • Klugmann-Radziemska, E., Wcisło-Kucharek, P., 2017. Photovoltaic module temperature stabilization with the use of phase change materials. Solar Energy 150, 538–545. https://doi.org/10.1016/j.solener.2017.05.016
  • Petela, R., 2008. An approach to the exergy analysis of photosynthesis. Solar Energy 82, 311–328. https://doi.org/10.1016/j.solener.2007.09.002
  • Qiu, Z., Ma, X., Zhao, X., Li, P., Ali, S., 2016. Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system. Applied Energy 165, 260–271. https://doi.org/10.1016/j.apenergy.2015.11.053
  • Rajput, P., Tiwari, G.N., Sastry, O.S., 2016. Thermal modelling and experimental validation of hot spot in crystalline silicon photovoltaic modules for real outdoor condition. Solar Energy 139, 569–580. https://doi.org/10.1016/j.solener.2016.10.016
  • Rezvanpour, M., Borooghani, D., Torabi, F., Pazoki, M., 2020. Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation. Renewable Energy 146, 1907–1921. https://doi.org/10.1016/j.renene.2019.07.075
  • Sarafraz, M.M., Safaei, M.R., Leon, A.S., Tlili, I., Alkanhal, T.A., Tian, Z., Goodarzi, M., Arjomandi, M., 2019. Experimental investigation on thermal performance of a PV/T-PCM (photovoltaic/thermal) system cooling with a PCM and nanofluid. Energies 12, 1–16. https://doi.org/10.3390/en12132572
  • Selimefendigil, F., Bayrak, F., Oztop, H.F., 2018. Experimental analysis and dynamic modeling of a photovoltaic module with porous fins. Renewable Energy 125, 193–205. https://doi.org/10.1016/J.RENENE.2018.02.002
  • Silvestre, S., Chouder, A., 2008. Effects of shadowing on photovoltaic module performance. Progress in Photovoltais: Research and Applications 16, 141–149. https://doi.org/10.1002/pip
  • Solanki, S.C., Dubey, S., Tiwari, A., 2009. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors. Applied Energy 86, 2421–2428. https://doi.org/10.1016/j.apenergy.2009.03.013
  • Su, D., Jia, Y., Alva, G., Liu, L., Fang, G., 2017. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Conversion and Management 131, 79–89. https://doi.org/10.1016/j.enconman.2016.11.002
  • Tiwari, A., Dubey, S., Sandhu, G.S., Sodha, M.S., Anwar, S.I., 2009. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes. Applied Energy 86, 2592–2597. https://doi.org/10.1016/j.apenergy.2009.04.004
  • Tiwari, A., Sodha, M.S., 2006. Performance evaluation of solar PV/T system: An experimental validation. Solar Energy 80, 751–759. https://doi.org/10.1016/j.solener.2005.07.006
  • Zhao, J., Li, Z., Ma, T., 2019. Performance analysis of a photovoltaic panel integrated with phase change material. Energy Procedia 158, 1093–1098. https://doi.org/10.1016/j.egypro.2019.01.264