Rejeneratif Endodontik Tedavide Biyomalzeme Seçimi ve Doku Mühendisliği Uygulamaları

Dental pulpa mine, dentin, sement gibi yüksek oranda mineralize dokularla çevrili ve dişin homeostazını sağlayan yumuşak bir bağ dokusudur. Pulpa dokusu, odontoblastik hücrelerin anatomik düzeni ve postmitotik yapısı nedeniyle kısıtlı bir rejenerasyon yeteneğine sahip özelleşmiş bir mineralize dokudur. Diş çürüğü veya enflamasyon nedeniyle çok hızlı şekilde nekrotik hale gelip, endodontik tedaviye gereksinim duyabilir. Klasik endodontik tedavi enfekte pulpa dokusu ve kök dentininin uzaklaştırılıp dezenfekte edilen kanal boşluğunun hermetik sızdırmazlığı sağlayacak şekilde bioinert bir malzeme ile doldurulması esasına dayanır. Kök oluşumunu tamamlamamış immatur ve nekrotik pulpalı dişlerde ise Ca(OH)2 ve MTA (Mineral Trioksit Agregat) kullanılarak apikal bir bariyer oluşturulacak şekilde tedavi uygulanmaktadır. Bu yöntemlerle tedavi edilen dişte kök uzunluğunda ve kalınlığında artış olmamaktadır. Bu nedenle bu dişler ömür boyu devital ve zayıf bir diş olarak kalmaktadırlar. Endodontik tedavide en çok arzu edilen devital ve nekrotik pulpanın sağlıklı pulpa dokusu ile yer değiştirmesidir. Rejeneratif endodontik tedavi klasik endodontik tedaviye bir alternatiftir. Rejeneratif endodontik tedavi ''dentin ve kök yapılarının yanı sıra pulpa-dentin kompleksinin hücreleri de dahil olmak üzere hasarlı diş yapılarını tedavi etmek için tasarlanmış biyolojik tabanlı prosedürler '' olarak tanımlanır. Biomateryal bilimi ve doku mühendisliği teknolojisindeki son gelişmeler rejeneratif endodontik tedavi yönteminin gelişmesini teşvik etmiştir. Doku mühendisliğinin temelini oluşturan kök hücre, doku iskelesi ve büyüme faktörleri ile rejeneratif endodontik tedavi alanında çok sayıda çalışmalar yapılmaktadır. Şu anda önerilmekte olan pulpa rejenerasyonu teknikleri henüz geliştirme aşamasındadır. Bu derleme de, güncel rejeneratif endodontide kullanılan klasik doku mühendisliği üçlüsü olarak da adlandırılan farklı kök hücre, büyüme faktörleri ve doku iskeleri ile ilgili çalışmalar incelenmiştir. Ayrıca rejeneratif endodontik uygulamalar için geliştirilen organoidler ve çip üstü organlar ile tedavi yaklaşımları da sunulmuştur. Rejenerasyonun kanserle olası bağlantısına yer verilmiştir. Son olarak rutin klinik uygulamalar için geliştirilen tedavi prosedürünün aşamaları özetlenmektedir.

Biomaterial Selection and Tissue Engineering Applications in Regenerative Endodontic Treatment

Dental pulp is a soft connective tissue that is surrounded by highly mineralized tissues such as enamel, dentin, cementum and provides homeostasis of the tooth. Pulp tissue is a specialized mineralized tissue with a limited regeneration ability due to the anatomical arrangement and postmitotic structure of odontoblastic cells. Classical endodontic treatment is based on removing the infected pulp tissue and root dentin and filling the disinfected canal cavity with a bioinert material to ensure hermetically sealed. It may quickly become necrotic due to tooth decay or inflammation and may require endodontic treatment. In immature that have not completed root formation and necrotic pulp teeth, an apical barrier is formed by using Ca(OH)2 and MTA (Mineral Trioxide Aggregate). There is no increase in root length and thickness in the tooth treated with these methods. For this reason, these teeth remain devital and weak teeth for life. The most desired in endodontic treatment is the replacement of devital and necrotic pulp with healthy pulp tissue. Regenerative endodontic therapy is an alternative to classical endodontic therapy. Regenerative endodontic therapy is defined as '' bio-based procedures designed to treat damaged tooth structures, including cells of the pulp-dentin complex, as well as dentin and root structures. ''Recent advances in biomaterial science and tissue engineering technology have encouraged the development of regenerative endodontic treatment method. Numerous studies are carried out in the field of regenerative endodontic treatment with stem cells, tissue scaffold and growth factors, which are the basis of tissue engineering. Pulp regeneration techniques that are currently proposed are still under development. In this review, studies on different stem cells, growth factors and tissue scaffolds used as the classical tissue engineering trio used in current regenerative endodontics are reviewed and the stages of the treatment procedure developed for routine clinical applications are summarized. In addition, organoids and organ-o-a-chip treatment approaches developed for regenerative endodontic applications were also presented. The relationship between regeneration and cancer was given. Finally, the stages of the treatment procedure developed for routine clinical applications were included. 

___

  • Alobaid, A. S., Cortes, L. M., Lo, J., Nguyen, T. T., Albert, J., Abu-Melha, A. S., . . . Gibbs, J. L. (2014). Radiographic and clinical outcomes of the treatment of immature permanent teeth by revascularization or apexification: a pilot retrospective cohort study. Journal of endodontics, 40(8), 1063-1070.
  • Andreasen, J. O., Farik, B., & Munksgaard, E. C. (2002). Long‐term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dental Traumatology, 18(3), 134-137.
  • Bellamy, C., Shrestha, S., Torneck, C., & Kishen, A. (2016). Effects of a bioactive scaffold containing a sustained transforming growth factor-β1–releasing nanoparticle system on the migration and differentiation of stem cells from the apical papilla. Journal of endodontics, 42(9), 1385-1392.
  • Bezgin, T., Yilmaz, A. D., Celik, B. N., Kolsuz, M. E., & Sonmez, H. (2015). Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. Journal of endodontics, 41(1), 36-44.
  • Casagrande, L., Demarco, F., Zhang, Z., Araujo, F., Shi, S., & Nör, J. (2010). Dentin-derived BMP-2 and odontoblast differentiation. Journal of dental research, 89(6), 603-608.
  • Ceccarelli, G., Presta, R., Benedetti, L., Cusella De Angelis, M. G., Lupi, S. M., & Rodriguez y Baena, R. (2017). Emerging perspectives in scaffold for tissue engineering in oral surgery. Stem Cells International, 2017.
  • Chang, B., Ahuja, N., Ma, C., & Liu, X. (2017). Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Materials Science and Engineering: R: Reports, 111, 1-26.
  • Chen, M. H., Chen, K. L., Chen, C. A., Tayebaty, F., Rosenberg, P., & Lin, L. (2012). Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures. International endodontic journal, 45(3), 294-305.
  • Chen, Y., Yu, Y., Chen, L., Ye, L., Cui, J., Sun, Q., . . . Liu, L. (2015). Human umbilical cord mesenchymal stem cells: a new therapeutic option for tooth regeneration. Stem Cells International, 2015.
  • Chen, Y. P., Jovani‐Sancho, M. d. M., & Sheth, C. C. (2015). Is revascularization of immature permanent teeth an effective and reproducible technique? Dental Traumatology, 31(6), 429-436.
  • Chrepa, V., Austah, O., & Diogenes, A. (2017). Evaluation of a commercially available hyaluronic acid hydrogel (Restylane) as injectable scaffold for dental pulp regeneration: an in vitro evaluation. Journal of endodontics, 43(2), 257-262.
  • Chueh, L.-H., & Huang, G. T.-J. (2006). Immature teeth with periradicular periodontitis or abscess undergoing apexogenesis: a paradigm shift. Journal of endodontics, 32(12), 1205-1213.
  • Collart-Dutilleul, P.-Y., Chaubron, F., De Vos, J., & Cuisinier, F. J. (2015). Allogenic banking of dental pulp stem cells for innovative therapeutics. World journal of stem cells, 7(7), 1010.
  • Dianat, O., Mashhadi Abas, F., Paymanpour, P., Eghbal, M. J., Haddadpour, S., & Bahrololumi, N. (2017). Endodontic repair in immature dogs' teeth with apical periodontitis: blood clot vs plasma rich in growth factors scaffold. Dental Traumatology, 33(2), 84-90.
  • Diogenes, A., Henry, M. A., Teixeira, F. B., & Hargreaves, K. M. (2013). An update on clinical regenerative endodontics. Endodontic Topics, 28(1), 2-23.
  • Diogenes, A., & Ruparel, N. B. (2017). Regenerative endodontic procedures: clinical outcomes. Dental Clinics, 61(1), 111-125.
  • Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324(5935), 1673-1677.
  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., . . . Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317.
  • Ducret, M., Fabre, H., Farges, J.-C., Degoul, O., Atzeni, G., McGuckin, C., . . . Perrier-Groult, E. (2015). Production of human dental pulp cells with a medicinal manufacturing approach. Journal of endodontics, 41(9), 1492-1499.
  • El Omar, R., Beroud, J., Stoltz, J.-F., Menu, P., Velot, E., & Decot, V. (2014). Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Engineering Part B: Reviews, 20(5), 523-544.
  • Endodontics, A. A. o. (2018). AAE Clinical Considerations for a Regenerative Procedure.
  • Feng, X., Lu, X., Huang, D., Xing, J., Feng, G., Jin, G., . . . Nie, D. (2014). 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells. Cellular and molecular neurobiology, 34(6), 859-870.
  • Forraz, N., & McGuckin, C. (2011). The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Proliferation, 44, 60-69.
  • Frank, A. L. (1966). Therapy for the divergent pulpless tooth by continued apical formation. The Journal of the American Dental Association, 72(1), 87-93.
  • Friedman, P. M., Mafong, E. A., Kauvar, A. N., & Geronemus, R. G. (2002). Safety data of injectable nonanimal stabilized hyaluronic acid gel for soft tissue augmentation. Dermatologic Surgery, 28(6), 491-494.
  • Galler, K., Krastl, G., Simon, S., Van Gorp, G., Meschi, N., Vahedi, B., & Lambrechts, P. (2016). European Society of Endodontology position statement: revitalization procedures. International endodontic journal, 49(8), 717-723.
  • Gathani, K. M., & Raghavendra, S. S. (2016). Scaffolds in regenerative endodontics: A review. Dental research journal, 13(5), 379.
  • Gomes-Filho, J. E., Duarte, P. C. T., de Oliveira, C. B., Watanabe, S., Lodi, C. S., Cintra, L. T. Â., & Bernabé, P. F. E. (2012). Tissue reaction to a triantibiotic paste used for endodontic tissue self-regeneration of nonvital immature permanent teeth. Journal of endodontics, 38(1), 91-94.
  • Gong, T., Heng, B. C., Lo, E. C. M., & Zhang, C. (2016). Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells International, 2016.
  • Gronthos, S., Brahim, J., Li, W., Fisher, L., Cherman, N., Boyde, A., . . . Shi, S. (2002). Stem cell properties of human dental pulp stem cells. Journal of dental research, 81(8), 531-535.
  • Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97(25), 13625-13630.
  • He, H., Yu, J., Liu, Y., Lu, S., Liu, H., Shi, J., & Jin, Y. (2008). Effects of FGF2 and TGFβ1 on the differentiation of human dental pulp stem cells in vitro. Cell biology international, 32(7), 827-834.
  • Heithersay, G. S. (1975). Calcium hydroxide in the treatment of pulpless teeth with associated pathology. International endodontic journal, 8(2), 74-93.
  • Hiyama, T., Ozeki, N., Mogi, M., Yamaguchi, H., Kawai, R., Nakata, K., . . . Nakamura, H. (2013). Matrix metalloproteinase-3 in odontoblastic cells derived from ips cells: unique proliferation response as odontoblastic cells derived from ES cells. PloS one, 8(12), e83563.
  • Hu, B., Unda, F., Bopp-Kuchler, S., Jimenez, L., Wang, X., Haikel, Y., . . . Lesot, H. (2006). Bone marrow cells can give rise to ameloblast-like cells. Journal of dental research, 85(5), 416-421.
  • Huang, G.-J., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of dental research, 88(9), 792-806.
  • Huang, G. T.-J., & Lin, L. M. (2008). Letter to the editor: Comments on the use of the term “revascularization” to describe. Journal of endodontics, 34(5), 511.
  • Huang, G. T.-J., Yamaza, T., Shea, L. D., Djouad, F., Kuhn, N. Z., Tuan, R. S., & Shi, S. (2010). Stem/progenitor cell–mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Engineering Part A, 16(2), 605-615.
  • Huang, G. T. (2009). Pulp and dentin tissue engineering and regeneration: current progress. Regenerative medicine, 4(5), 697-707.
  • Inuyama, Y., Kitamura, C., Nishihara, T., Morotomi, T., Nagayoshi, M., Tabata, Y., . . . Terashita, M. (2010). Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(1), 120-128.
  • Iohara, K., Nakashima, M., Ito, M., Ishikawa, M., Nakasima, A., & Akamine, A. (2004). Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. Journal of dental research, 83(8), 590-595.
  • Iohara, K., Zheng, L., Ito, M., Ishizaka, R., Nakamura, H., Into, T., . . . Nakashima, M. (2009). Regeneration of dental pulp after pulpotomy by transplantation of CD31-/CD146-side population cells from a canine tooth.
  • Ishizaka, R., Iohara, K., Murakami, M., Fukuta, O., & Nakashima, M. (2012). Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials, 33(7), 2109-2118.
  • Iwaya, S. i., Ikawa, M., & Kubota, M. (2001). Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dental Traumatology, 17(4), 185-187.
  • Jadhav, G., Shah, N., & Logani, A. (2012). Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: a pilot clinical study. Journal of endodontics, 38(12), 1581-1587.
  • Jeeruphan, T., Jantarat, J., Yanpiset, K., Suwannapan, L., Khewsawai, P., & Hargreaves, K. M. (2012). Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. Journal of endodontics, 38(10), 1330-1336.
  • Jung, S.-M., Yoon, G. H., Lee, H. C., & Shin, H. S. (2015). Chitosan nanoparticle/PCL nanofiber composite for wound dressing and drug delivery. Journal of Biomaterials Science, Polymer Edition, 26(4), 252-263.
  • Kahler, B., Mistry, S., Moule, A., Ringsmuth, A. K., Case, P., Thomson, A., & Holcombe, T. (2014). Revascularization outcomes: a prospective analysis of 16 consecutive cases. Journal of endodontics, 40(3), 333-338.
  • Kahler, B., & Rossi-Fedele, G. (2016). A review of tooth discoloration after regenerative endodontic therapy. Journal of endodontics, 42(4), 563-569.
  • Kerkis, I., Kerkis, A., Dozortsev, D., Stukart-Parsons, G. C., Massironi, S. M. G., Pereira, L. V., . . . Cerruti, H. F. (2006). Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs, 184(3-4), 105-116.
  • Kim, J.-H., Kim, Y., Shin, S.-J., Park, J.-W., & Jung, I.-Y. (2010). Tooth discoloration of immature permanent incisor associated with triple antibiotic therapy: a case report. Journal of endodontics, 36(6), 1086-1091.
  • Kim, S., Malek, M., Sigurdsson, A., Lin, L., & Kahler, B. (2018). Regenerative endodontics: a comprehensive review. International endodontic journal, 51(12), 1367-1388.
  • Kim, Y.-S., Min, K.-S., Jeong, D.-H., Jang, J.-H., Kim, H.-W., & Kim, E.-C. (2010). Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells. Journal of endodontics, 36(11), 1824-1830.
  • Lambricht, L., De Berdt, P., Vanacker, J., Leprince, J., Diogenes, A., Goldansaz, H., . . . Des Rieux, A. (2014). The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla. Dental Materials, 30(12), e349-e361.
  • Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science (New York, NY), 260(5110), 920-926. Liu, P., Li, K., & Xu, S. (2016). The future of iPS cells in advancing regenerative medicine. Genetics Research, 98.
  • Marconyak Jr, L. J., Kirkpatrick, T. C., Roberts, H. W., Roberts, M. D., Aparicio, A., Himel, V. T., & Sabey, K. A. (2016). A comparison of coronal tooth discoloration elicited by various endodontic reparative materials. Journal of endodontics, 42(3), 470-473.
  • Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 100(10), 5807-5812.
  • Mullane, E. M., Dong, Z., Sedgley, C., Hu, J.-C., Botero, T., Holland, G., & Nör, J. (2008). Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. Journal of dental research, 87(12), 1144-1148.
  • Murray, P. E., Garcia-Godoy, F., & Hargreaves, K. M. (2007). Regenerative endodontics: a review of current status and a call for action. Journal of endodontics, 33(4), 377-390.
  • Murry, C. E., & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132(4), 661-680.
  • Nakashima, M. (1994). Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and-4. Journal of dental research, 73(9), 1515-1522.
  • Nakashima, M., & Akamine, A. (2005). The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of endodontics, 31(10), 711-718.
  • Nosrat, A., Seifi, A., & Asgary, S. (2011). Regenerative endodontic treatment (revascularization) for necrotic immature permanent molars: a review and report of two cases with a new biomaterial. Journal of endodontics, 37(4), 562-567.
  • NYGAARD‐ÖSTBY, B., & HJORTDAL, O. (1971). Tissue formation in the root canal following pulp removal. European Journal of Oral Sciences, 79(3), 333-349.
  • Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. nature, 448(7151), 313-317.
  • Okita, K., Nagata, N., & Yamanaka, S. (2011). Immunogenicity of induced pluripotent stem cells. Circulation research, 109(7), 720-721.
  • Orti, V., Collart-Dutilleul, P.-Y., Piglionico, S., Pall, O., Cuisinier, F., & Panayotov, I. (2018). Pulp regeneration concepts for nonvital teeth: from tissue engineering to clinical approaches. Tissue Engineering Part B: Reviews, 24(6), 419-442.
  • Ozeki, N., Hase, N., Higuchi, N., Hiyama, T., Yamaguchi, H., Kawai, R., . . . Mogi, M. (2017). Gelatin scaffold combined with bone morphogenetic protein-4 induces odontoblast-like cell differentiation involving integrin profile changes, autophagy-related gene 10, and Wnt5 sequentially in human induced pluripotent stem cells. Differentiation, 93, 1-14.
  • Ozeki, N., Mogi, M., Kawai, R., Yamaguchi, H., Hiyama, T., Nakata, K., & Nakamura, H. (2013). Mouse-induced pluripotent stem cells differentiate into odontoblast-like cells with induction of altered adhesive and migratory phenotype of integrin. PloS one, 8(11), e80026.
  • Östby, B. N. (1961). The role of the blood clot in endodontic therapy an experimental histologic study. Acta Odontologica Scandinavica, 19(3-4), 323-353.
  • Pagella, P., Neto, E., Lamghari, M., & Mitsiadis, T. A. (2015). Investigation of orofacial stem cell niches and their innervation through microfluidic devices. European Cells and Materials (ECM), 29, 213-223.
  • Parirokh, M., & Torabinejad, M. (2010). Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. Journal of endodontics, 36(3), 400-413.
  • Petrino, J. A., Boda, K. K., Shambarger, S., Bowles, W. R., & McClanahan, S. B. (2010). Challenges in regenerative endodontics: a case series. Journal of endodontics, 36(3), 536-541.
  • Raddall, G., Mello, I., & Leung, B. M. (2019). Biomaterials and scaffold design strategies for regenerative endodontic therapy. Frontiers in Bioengineering and Biotechnology, 7, 317.
  • Rafter, M. (2005). Apexification: a review. Dental Traumatology, 21(1), 1-8.
  • Reynolds, K., Johnson, J., & Cohenca, N. (2009). Pulp revascularization of necrotic bilateral bicuspids using a modified novel technique to eliminate potential coronal discolouration: a case report. International endodontic journal, 42(1), 84-92.
  • Rosa, V., Della Bona, A., Cavalcanti, B. N., & Nör, J. E. (2012). Tissue engineering: from research to dental clinics. Dental Materials, 28(4), 341-348.
  • Rosenberg, B., Murray, P. E., & Namerow, K. (2007). The effect of calcium hydroxide root filling on dentin fracture strength. Dental Traumatology, 23(1), 26-29.
  • Rutherford, R. B. (2001). BMP‐7 gene transfer to inflamed ferret dental pulps. European Journal of Oral Sciences, 109(6), 422-424.
  • Rutherford, R. B., & Gu, K. (2000). Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein‐7. European Journal of Oral Sciences, 108(3), 202-206.
  • Sakai, V., Zhang, Z., Dong, Z., Neiva, K., Machado, M., Shi, S., . . . Nör, J. (2010). SHED differentiate into functional odontoblasts and endothelium. Journal of dental research, 89(8), 791-796.
  • Saucedo, J. M., Yaffe, M. A., Berschback, J. C., Hsu, W. K., & Kalainov, D. M. (2012). Platelet-rich plasma. Journal of Hand Surgery, 37(3), 587-589.
  • Seki, D., Takeshita, N., Oyanagi, T., Sasaki, S., Takano, I., Hasegawa, M., & Takano-Yamamoto, T. (2015). Differentiation of Odontoblast‐Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection. Stem Cells Translational Medicine, 4(9), 993-997.
  • Seo, B.-M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., . . . Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet, 364(9429), 149-155.
  • Shiehzadeh, V., Aghmasheh, F., Shiehzadeh, F., Joulae, M., Kosarieh, E., & Shiehzadeh, F. (2014). Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: new method and three case reports. Indian Journal of Dental Research, 25(2), 248.
  • Shimabukuro, Y., Ueda, M., Ozasa, M., Anzai, J., Takedachi, M., Yanagita, M., . . . Murakami, S. (2009). Fibroblast growth factor–2 regulates the cell function of human dental pulp cells. Journal of endodontics, 35(11), 1529-1535.
  • Shrestha, S., Diogenes, A., & Kishen, A. (2015). Temporal-controlled dexamethasone releasing chitosan nanoparticle system enhances odontogenic differentiation of stem cells from apical papilla. Journal of endodontics, 41(8), 1253-1258.
  • Shrestha, S., Torneck, C. D., & Kishen, A. (2016). Dentin conditioning with bioactive molecule releasing nanoparticle system enhances adherence, viability, and differentiation of stem cells from apical papilla. Journal of endodontics, 42(5), 717-723.
  • Six, N., Lasfargues, J.-J., & Goldberg, M. (2002). Differential repair responses in the coronal and radicular areas of the exposed rat molar pulp induced by recombinant human bone morphogenetic protein 7 (osteogenic protein 1). Archives of oral biology, 47(3), 177-187.
  • Sonoyama, W., Liu, Y., Fang, D., Yamaza, T., Seo, B.-M., Zhang, C., . . . Shi, S. (2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS one, 1(1), e79.
  • Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R. S., Wang, S., Shi, S., & Huang, G. T.-J. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. Journal of endodontics, 34(2), 166-171.
  • Souto, G. D., Farhane, Z., Casey, A., Efeoglu, E., McIntyre, J., & Byrne, H. J. (2016). Evaluation of cytotoxicity profile and intracellular localisation of doxorubicin-loaded chitosan nanoparticles. Analytical and bioanalytical chemistry, 408(20), 5443-5455.
  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663-676.
  • Takeuchi, N., Hayashi, Y., Murakami, M., Alvarez, F., Horibe, H., Iohara, K., . . . Nakashima, M. (2015). Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte‐colony stimulating factor. Oral diseases, 21(1), 113-122.
  • Tong, H. J., Rajan, S., Bhujel, N., Kang, J., Duggal, M., & Nazzal, H. (2017). Regenerative Endodontic Therapy in the Management of Nonvital Immature Permanent Teeth: A Systematic Review—Outcome Evaluation and Meta-analysis. Journal of endodontics, 43(9), 1453-1464.
  • Torabinejad, M., Nosrat, A., Verma, P., & Udochukwu, O. (2017). Regenerative endodontic treatment or mineral trioxide aggregate apical plug in teeth with necrotic pulps and open apices: a systematic review and meta-analysis. Journal of endodontics, 43(11), 1806-1820.
  • Torabinejad, M., & Turman, M. (2011). Revitalization of tooth with necrotic pulp and open apex by using platelet-rich plasma: a case report. Journal of endodontics, 37(2), 265-268.
  • Trevino, E. G., Patwardhan, A. N., Henry, M. A., Perry, G., Dybdal-Hargreaves, N., Hargreaves, K. M., & Diogenes, A. (2011). Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. Journal of endodontics, 37(8), 1109-1115.
  • van der Kooy, D., & Weiss, S. (2000). Why stem cells? Science, 287(5457), 1439-1441.
  • Venkatesan, J., Nithya, R., Sudha, P. N., & Kim, S.-K. (2014). Role of alginate in bone tissue engineering. In Advances in food and nutrition research (Vol. 73, pp. 45-57): Elsevier.
  • Wang, W., Dang, M., Zhang, Z., Hu, J., Eyster, T. W., Ni, L., & Ma, P. X. (2016). Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta biomaterialia, 36, 63-72.
  • Webber, R. (1984). Apexogenesis versus apexification. Dental Clinics of North America, 28(4), 669.
  • Yadlapati, M., Biguetti, C., Cavalla, F., Nieves, F., Bessey, C., Bohluli, P., . . . Silva, R. M. (2017). Characterization of a vascular endothelial growth factor–loaded bioresorbable delivery system for pulp regeneration. Journal of endodontics, 43(1), 77-83.
  • Yang, J.-w., Zhang, Y.-f., Sun, Z.-y., Song, G.-t., & Chen, Z. (2015). Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. Journal of biomaterials applications, 30(2), 221-229.
  • Yang, J., Yuan, G., & Chen, Z. (2016). Pulp regeneration: current approaches and future challenges. Frontiers in physiology, 7, 58.
  • Yokoi, T., Saito, M., Kiyono, T., Iseki, S., Kosaka, K., Nishida, E., . . . Noguchi, T. (2007). Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell and tissue research, 327(2), 301-311.
  • Yoldaş, S. E., Bani, M., Atabek, D., & Bodur, H. (2016). Comparison of the potential discoloration effect of bioaggregate, biodentine, and white mineral trioxide aggregate on bovine teeth: in vitro research. Journal of endodontics, 42(12), 1815-1818.
  • Zhang, L., Morsi, Y., Wang, Y., Li, Y., & Ramakrishna, S. (2013). Review scaffold design and stem cells for tooth regeneration. Japanese Dental Science Review, 49(1), 14-26.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

Örnek Bir Binanın Isıl ve Çevresel Performansının Autodesk Revit Simülasyon Programı ile Analizi

Dilara AYTÜRK TULUKCU, Murat ORAL

Katalitik Ozonlanmanın Doğal Organik Maddenin Yapısına ve Trihalometan Oluşturma Potansiyeline Etkisi

Alper ALVER, Ahmet KILIÇ

Gri Tonlamalı Görüntülerdeki Yüksek Yoğunluklu Tuz ve Biber Gürültüsünü Kaldırmak için Farklı Uyarlamalı Modifiye Riesz Ortalama Filtresi

Samet MEMİŞ, Uğur ERKAN

Somut ve Somut Olmayan Kültürel Miras Değerleriyle Çankırı Kenti ve Turizme Katkısı

Betül TÜLEK

Su Kalitesinin İnsansız Hava Aracı Verileri ve Fiziko-Kimyasal Parametrelerin Analizi ile Belirlenmesi: Aydınlar (Gülüç) Çayı Örneği

Nizamettin ÖZDOĞAN, Umut Güneş SEFERCİK, Yağmur KILINÇ, Emine ÇALIŞKAN, Can ATALAY

Sağlık Teknikerliği Programı Öğrencilerinin Nükleer Fizik Kavramları ile ilgili Kavramsal Öğrenme Düzeylerinin Belirlenmesi

Erdoğan ÖZDEMİR, Onur YARAR

Değerli Metal Katalizörlerde Katalizör Destek Malzemesi Olarak Biyotabanlı Malzemelerin Üretilmesi ve Karakterizasyonu

Elif YAMAN, Fatma GÖKMEN, Sinan TEMEL, Nurgül ÖZBAY, Gamzenur ÖZSİN

Samsun ve Bafra Yağış Verilerinin Trend Analizi

Büşra KORKMAZ, Bahtiyar EFE

Yeni Bir Güvenlik Katmanı Ekleyerek Mobil Hizmet Kullanıcısı Kimliğinin Güvenliğini Sağlama

Büşra ÖZDENİZCİ KÖSE, Onur BÜK, Hacı Ali MANTAR, Vedat COSKUN, Utku ERDEMİR

Naylon ve Polyester Kumaş Üzerine Sublimasyon Transfer Baskıda Sıcaklık ve Süre Değişkeninin Baskı Kalitesine Etkisi

Meral ÖZOMAY, Zafer ÖZOMAY