Mikrodalga Görüntüleme Sistemleri için Mikroşerit Anten Tasarımı

Bu çalışmada, pek çok kanser tümörünün tespitinde kullanılmak üzere giyilebilir bir dikdörtgen mikroşerit anten tasarımı ve gerçeklemesi yapılmıştır. Mikrodalga görüntüleme sistemlerinde hem alıcı hem de verici olarak kullanılabilecek antenin yama ve toprak kısmı iletken (bakır) banttan, yalıtkan kısmı ise PF-4 (köpük) malzemeden oluşturulmuştur. CST programı kullanılarak tasarlanan antenin çalışma frekans aralığı 1.71 GHz ile 8.53 GHz arasında olup band genişliği 6.82 GHz’dir. Gerçeklenen antenin bant genişliği ise 6.75 GHz’dir (1.6 GHz- 8.35 GHz). Anten kazancı 5.31 dB gibi oldukça yüksek bir değerdir. Dar bantlı ve düşük kazançlı klasik mikroşerit antenlerden farklı olarak tasarlanan ve gerçeklenen anten ultra geniş bant gerektiren uygulamalarda rahatlıkla kullanılabilir. Ayrıca tasarlanan antenin ışıma karakteristiğinin oldukça iyi ve etrafında oluşan elektrik alan değişiminin sağlık açısından bir sorun yaratmayacak düzeyde olduğu da söylenebilir. İnsan vücudundaki organların iletkenlik değerlerinin değişiminin 1 GHz- 10 GHz frekans bandında yüksek olduğu; sağlam dokular ile tümörlü/kanserli dokuların iletkenlik değerlerinin farklı olduğu gerçeğinden yola çıkarak tasarlanan antenin akciğer, beyin, karaciğer, böbrek gibi organlarda bulunan tümörleri tespit etme için dizayn edilecek mikrodalga görüntüleme sistemlerinde kullanılabilir. Ayrıca tasarlanan antenin giyilebilir bir formda olması özellikle kanser riski yüksek olan hastaların sürekli izlemesine de olanak tanımaktadır.

Microstrip Antenna Design for Microwave Imaging Systems

In this study, design and fabrication of a rectangular microstrip antenna is made to use for the determination of many cancer tumors. The antenna can be used as both receiver and transmitter, and its patch and ground part is composed of conductor (copper) band whereas the insulator part is made of PF-4 (foam). The antenna is designed by using the computer program CST, and its operation frequency interval is between 1.71 GHz and 8.53 GHz, i.e, bandwidth is 6.82 GHz. Bandwidth of the fabricated antenna is 6.75 GHz (1.6 GHz-8.35 GHz). Antenna gain is 5.31 dB which is quite high. The antenna which is designed and fabricated in a different way from the conventional narrowband and low-power microstrip antennas can be used easily in the cases requiring ultra high band. Besides, it can be said that propagation characteristics of the designed antenna is quite good, and the electric field variation aroud it is on the level that does not pose a problem for the health. Conductivity value variations of human organs between 1 GHz- 10 GHz frequency band is high. Conductivity values of healthy tissues and tissues with tumor/cancer are different. By using these facts, the designed antenna can be used for microwave monitoring systems to be designed for determining the tumors in the organs such as lung, brain, liver and kidney. Also, since the designed antenna is wearable, it enables following the patients especially with high cancer risk continuously.

___

  • Akalya, C.G., Nandalal, V., (2017). On-Body Adhesive Microstrip Antenna for Wearable Application. International Journal of Communications, Cilt 2, ss. 137-145.
  • Albairaqdar, O.H.M. (2018) Giyilebilir Uygulamalar İçin Eşit Yama Alanına (EYA) Sahip Tekstil Dielektrik Malzeme Tabanlı Mikroşerit Antenlerin 2.4, 3 ve 5.8 GHz frekanslarındaki Performansları. Yüksek Lisans Tezi, Selçuk Üniversitesi.
  • Alsharif, F., Kurnaz, Ç. (2018). Wearable Microstrip Patch Ultra Wide Band Antenna for Breast Cancer Detection. 41st International Conference on Telecommunications and Signal Processing, 4-6 July 2018, Athens, Greece.
  • AlShehhi, H., Alzarouni M., AlYammahi, N., Shubair, R., Ali N. (2018). Compact Low-Profile Wearable Antennas for Breast Cancer Detection. Technical Report, Cornell University.
  • Balanis, C.A., (2005). Antenna Theory: Analysis and Design: Willey-Inter Science.
  • Chahat, N., Zhadobov M., Sauleau, R., Ito, K. (2010). Design and Characterization of an UWB Wearable Antenna. Loughborough Antennas and Propagation Conference (LAPC), 8-9 Nov. 2010, Loughborough, UK.
  • Chen, B. Wang, J. Qi, H. Zhang, J. Chen, S. Wang, X. (2017). The Specific Absorption Rate of Tissues in Rats Exposed to Electromagnetic Plane Waves in the Frequency Range of 0.05–5GHz and SAR wb in Free-moving Rats. Australasian Physical & Engineering Sciences in Medicine March. Cilt 40, Sayı 1, ss. 21–28.
  • Deschamps, G.A. (1953). Microstrip Microwave Antennas. 3rd USAF Symposium on Antennas.
  • GCO, (2020), Türkiye Kanser İstatistikleri, https://gco.iarc.fr/today/data/factsheets/populations/792-turkey-fact-sheets.pdf, (Erişim tarihi 3 Ekim 2020).
  • Georges, B., Henri, G. (1955). Flat Aerial for Ultra High Frequencies. French Patent No. 703113.
  • Faria, J.V. (2015). Flexible Antennas Design and Test for Human Body Applications Scenarios. Master of thesis, Instituto Superior Tecnico Lisboa.
  • Howell, J.W. (1975). Microstrip antennas. IEEE Transactions Antennas Propagation. Cilt AP-23, Sayı 1, ss. 90-93.
  • HSGM, (2020), Türkiye Kanser İstatistikleri 2016, https://hsgm.saglik.gov.tr/depo/birimler/kanserdb/istatistik/Trkiye_Kanser_statistikleri_2016.pdf, (Erişim tarihi 3 Ekim 2020).
  • ICNIRP, (1998). Guidelines for Limiting Exposure to Time-varying Electric, Magnetic and Electromagnetic Fields (up to 300 GHz). Health Physics. Cilt 74, Sayı 4, ss.494-522.
  • Lakshmanan, R., Sukumaran, S. K. (2015). Flexible Ultra Wide Band Antenna for WBAN Applications. Procedia Technology. Cilt 24, ss. 880-887.
  • Munson, R.E. (1974). Conformal Microstrip Antennas and Microstrip Phased Arrays. IEEE Transactions Antennas Propagation, Cilt AP-22, Sayı 1, ss. 74-78.
  • Rajkamal, K., Immadi, G. (2018). Design and Analysis of Different Substrate Materials for UWB Antenna used for Biomedical Applications. Journal of Theoretical and Applied Information Technology. Cilt 96, Sayı 7, ss. 1992-8645.
  • Sankaralingam, S., Gupta, B. (2010). Development of Textile Antennas For body Wearable Applications and Investigations On Their Performance under Bent Conditions. Progress in Electromagnetics research, Cilt 22, ss. 53-71.
  • Singh, N. Singh, A.K., Singh V. K. (2015). Design and Performance of Wearable Ultra Wide Band Textile Antenna for Medical Applications. Open Engineering, Cilt 57, Sayı 5, ss.117–123.
  • Tuovinen, T., Berg, M., Kamya, Y, Matti, Y., Jari Iinatti, H. (2013). On the Evaluation of Biological Effects of Wearable Antennas on Contact with Dispersive Medium in Terms of SAR and Bio-Heat by Using FIT Technique Centre for Wireless Communications. International Symposium on Medical Information and Communication Technology. 6-8 March, Tokyo, Japan.
  • WHO, (2020). WHO report on cancer: setting priorities, investing wisely and providing care for all, https://www.who.int/publications/i/item/who-report-on-cancer-setting-priorities-investing-wisely-and-providing-care-for-all (Erişim tarihi 3 Ekim 2020).
  • WCRF, (2020). Worldwide cancer data Global cancer statistics for the most common cancers, https://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data, (Erişim tarihi 3 Ekim 2020).
  • Zasowski, T., Althaus, F., Stager, M., Wittneben, A., Tröster, G. (2003). UWB for Noninvasive Wireless Body Area Networks Channel Measurements And Results. IEEE Conference on Ultra Wideband Systems and Technologies, 6-19 November, Reston, VA, USA.