Kaya Gazlarının Yanma Karakteristikleri ve İs oluşumu

Bu çalışmada, fakir karışım koşullarında bir yanma odasında metan ve farklı bileşenlere sahip çeşitli kaya gazlarının difüzyon alevleri ve kurum oluşumları incelenmiştir. Kurum modelinin yayınlanmış deneysel verilerle doğrulanmasından sonra, kaya gazlarının alev uzunlukları ve çapları, ara ürünleri, sıcaklıklar ve kirleticiler dikkate alınarak alev karakteristikleri karşılaştırılmıştır. Bu çalışmanın bulgularına göre, Moss-Brookes kurum modelinin One-Step ve Method of Moments modellerine göre daha doğru tahminlerde bulunduğu görülmektedir. Dahası Barnett kaya gazı yanma sırasında en yüksek miktarda kurum yaymaktayken, kaya gazları kadar ara ürün yaymasına rağmen metan gazı en az kurum yaymaktadır. Çünkü kaya gazlarının yanması sırasında daha fazla yanmamış C elementi açığa çıkmaktadır. Bu nedenle, hidrokarbon yakıtlarda C/H oranı arttığında, alevden yayılan kurum miktarı da artar.

Combustion Characteristics and Soot Formation of Shale Gases

In this study, non-premixed combustion characteristics and soot formation of methane and various shale gaseous have been investigated in a combustion chamber under lean combustion conditions. After validation of the soot model with published experimental data, the flame characteristics considering flame lengths and diameters, intermediate species, temperatures, and pollutants of shale gaseous have been compared. The findings of this study show that the Moss-Brookes soot model predicts more accurate than the One-Step and Method of Moments models. Furthermore, the highest amount of soot is released during the combustion of Barnett shale gas. It is minimal for methane despite emitting intermediate species as much as shale gases. Since more unburned C element released during the combustion of shale gases. Therefore, when the C/H ratio in hydrocarbon fuels increases, the amount of soot emitted from the flame also increases.

___

  • Stevens, Paul., (2012). The 'Shale Gas Revolution': Developments and Changes. Chatham House, 11.11.2020.
  • Mansurov, Z. A., (2005). Soot Formation in Combustion Processes (Review), Combustion. Explosion and Shock Waves, 41(6),727-744. Haynes, B.S., and Wagner, H, GG., (1981). Soot Formation, Prog. Energy Combust. Sci., 7, 229-273.
  • Environmental Defence Fund (EDF), (t.y). Health impacts of air pollution, https://www.edf.org/health/health-impacts-air-pollution, 11.11.2020.
  • Gheorghe, I. F., and Ion B., (2011). The Effects of Air Pollutants on Vegetation and the Role of Vegetation in Reducing Atmospheric Pollution, The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources, Dr. Mohamed Khallaf (Ed.), ISBN: 978-953-307-528-0, InTech.
  • Lu, J., Ren, X., and Cao, L., (2016). Studies on Characteristics and Formation of Soot Nanoparticles in an Ethylene/Air Inverse Diffusion Flame Journal of Energy Engineering, 142(3), 04015041-1:8.
  • Cuoci, A., Frassoldati, A., Faravelli, T., and Ranzi, E., (2008). Kinetic Modeling of Soot Formation in Turbulent Nonpremixed Flames, Environmental Engineering Science, 25, 1407-1422.
  • Razak, M.F.A., Salehi, F., and Chishty, M.A., (2019). An Analysis of Turbulent Mixing Effects on the Soot Formation in High Pressure n-dodecane Sprays, Flow, Turbulence and Combustion, 103, 605-624.
  • Hernandez, I., Lecocq, G., Poitou, D., Riber, E., and Cuenot, B., (2013). Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation, Comptes Rendus Mécanique, 341(1-2), 238-246.
  • Watanabe, H., Kurose, R., Komori, S., Pitsch, H., (2006). A numerical simulation of soot formation in spray flames, Center for Turbulence Research Proceedings of the Summer Program, 325-336.
  • Manin, J, Skeen, S, Pickett, L, Kurtz, E. et al., (2014). Effects of Oxygenated Fuels on Combustion and Soot Formation/Oxidation Processes, SAE Int. J. Fuels Lubr. 7(3):704-717.
  • Lautenberger C.W., de Ris, J.L., Dembsey, N.A., Barnett, J.R., and Baum, H.R., (2005). A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames, Fire Safety Journal 40, 141–176.
  • Palazzo, N., Kögl, M., Bauer, P., Mannazhi, M.N., Zigan, L., Huber, F.J.T., and Will, S., (2019). Investigation of Soot Formation in a Novel Diesel Fuel Burner, Energies, 12 (3), 1993. https://doi.org/10.3390/en12101993.
  • Ito, T., Kitamura, T., Ueda, M., Matsumoto, T., Senda, J., and Fujimoto, H., (2003). Effects of Flame Lift-Off and Flame Temperature on Soot Formation in Oxygenated Fuel Sprays, Sae Technical Paper Series, 2003-01-0073.
  • Roditcheva, O.V., Bai, X.S., (2001). Pressure effect on soot formation in turbulent diffusion flames, Chemosphere 42, 811–821.
  • Xu, K., Zhang, H., Shen, W., Zhang, Y., and Wu, Y., and Lyu J, (2020). Soot Formation and Distribution in Coal Jet Flames over a Broad Range of Coal Concentration, Energy Fuels, 34, 7545-7553.
  • Kazem B., Mohammad, M., and Iman, Z., (2007). Studies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement, 26(3), 45-54.
  • Chong S.T., Raman V, Mueller M.E., Selvaraj P, Im H.G., (2019). Effect of soot model, moment method, and chemical kinetics on soot formation in a model aircraft combustor, Proceedings of the Combustion Institute, 37(1), 1065-10774.
  • Brookes, S. J., and Moss J.B., (1999). Measurements of Soot Production and Thermal Radiation From Confined Turbulent Jet Diffusion Flames of Methane, Combustion and Flame, 116, 49-61.
  • Afshari, F., Zavaragh, H.G., Sahin, B., Grifoni, R.C., Corvaro, F., Marchetti, B., Polonara, F., (2018). On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers, Mathematics and Computers in Simulation, 152, 51-68.
  • Ansys Inc, (2020). Ansys® Academic Research, Release 18.2. Ansys Inc., ANSYS FLUENT 12.0/12.1 Documentation, (2020). Reynolds-Averaged Approach vs. LES, https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node45.htm, 11.11.2020.
  • Khan I.M., Greeves G., A method for Calculating the Formation and Combustion of Soot in Diesel Engines, Heat transfer in Flames, Chapter 25. Scripta, Washington DC, 1974.
  • Frenklach M., and Harris, S. J. (1987). Aerosol dynamics modeling using the method of moments,” Journal of Colloid And Interface Science, 118(1 252–261.
  • Frenklach, M., (2002). Method of moments with interpolative closure,” Chemical Engineering Science, 57, 2229–2239.
  • Bodor A.L., (2019) Numerical modelling of soot formation and evolution in laminar flames with detailed kinetics, Chemical and Process Engineering, Université Paris-Saclay; Politecnico di Milano. English. NNT : 2019SACLC050.
  • Bullin K.A., and Krouskop P.E., (2008). Composition variety complicates processing plans for US shale gas, E-book, Based on: Annual Forum, Gas Processors Association, Houston Chapter, Houston, Oct. 7.
  • Cellek, M.S., (2020). Turbulent flames investigation of methane and syngas fuels with the perspective of near-wall treatment models, International Journal of Hydrogen Energy, 45(60), 35223-35234.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç