İç Mimarinin 3D Baskılı PLA Numunelerinin Kırılma Tokluğuna Etkileri Üzerine Bir Araştırma

3D baskı tekniklerini kullanan eklemeli üretim (EÜ), yalnızca prototiplemede değil, tıp bilimi ve biyomekanik mühendisliği gibi birçok uygulamada yapısal elemanların üretiminde de yaygın olarak kullanılmaktadır. Bu nedenle biyomekanik bileşenlerde uygulamak amacı ile 3D baskı teknikleri ile yapılmış bileşenlerin ve mühendislik malzemelerinin kırılma mekaniğinin araştırılması oldukça önemlidir. Bu çalışmada, iç mimarinin 3D baskılı polilaktik asit (PLA) bileşenlerinin karışık mod kırılma davranışı üzerindeki etkilerini araştırmak için, erimiş filament fabrikasyon tekniği kullanılarak %70 doluluk oranı ve dört farklı dolgu tipinde özel Arcan numuneleri üretilmiştir. Arcan numunelerinin karışık modlu kırılma deneylerinin tek yönlü bir çekme test makinesinde gerçekleştirilmesine izin veren özel bir fikstür tasarlanmıştır. Kırılma testleri sırasıyla 0°, 45° ve 90° olmak üzere 3 farklı yükleme açısı altında açılma modu, karışık mod I/II ve kayma modu olarak gerçekleştirilmiştir. Ayrıca, farklı yükleme açılarında kırılma tokluğunun hesaplanması için gerekli olan Arcan numunelerinin geometrik fonksiyonlarını belirlemek için sonlu elemanlar analizleri de yapılmıştır. Genel olarak, kırılma tokluğu testlerinin sonuçları, numunelerin çoğunlukla açılma ve karışık mod yükleme koşullarına maruz kalan bölümleri için üçgen dolgu deseni ile baskı yapılmasının nihai ürünlere daha yüksek kırılma tokluğu sağladığını ortaya koymuştur. Buna karşılık, saf kayma yüklemelerine maruz kalan kesitler için altıgen baskı deseni kırılmaya karşı daha iyi bir direnç sağlamıştır.

A Study on the Effects of the Interior Architecture on the Fracture Toughness of 3D Printed PLA Samples

Additive manufacturing (AM) using 3D printing techniques is widely used not only in prototyping, but also in production of structural elements in many applications such as medical science and biomechanical engineering. Therefore, it is highly important to investigate the fracture mechanics of components and engineering materials made with 3D printing techniques with the aim of application in biomechanical components. In this study, to investigate the effects of interior architecture on the mixed mode fracture behavior of 3D printed polylactic acid (PLA) components, special Arcan samples were produced at 70% filling ratio and four different filling types using fused filament fabrication technique. A special fixture has been designed that allowed the mixed-mode fracture experiments of the Arcan samples to be conducted on a unidirectional tensile test machine. The fracture tests were performed under 3 different loading angles of 0°, 45° and 90° as opening mode, mixed mode I / II and shear mode, respectively. In addition, the finite element analyses were also conducted to determine the geometric functions of the Arcan samples required for calculation of fracture toughness at different loading angles. Overall, the results of fracture toughness tests revealed that for the sections of the samples that are mainly exposed to opening and mixed-mode loading conditions, printing with the triangular filling pattern provides higher fracture toughness to the final products. In contrast, for the sections exposed to pure shear loadings, hexagonal printing pattern provides a better resistance against fracture.

___

  • Nagarajan, V., Mohanty, A. K., & Misra M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering, 4(6), 2899-2916. https://doi.org/10.1021/acssuschemeng.6b00321
  • Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., & Pruncu, C. I. (2020). 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold. Polymer Testing, 89, Article 106722. https://doi.org/10.1016/j.polymertesting.2020.106722
  • Torun, A. R., Yıldız, E. C., Kaya, Ş. H., & Choupani, N. (2020). Mixed-mode fracture behavior of 3D-printed PLA with zigzag filling. Green Materials, 9(1), 1-8. https://doi.org/10.1680/jgrma.20.00013
  • Sedighi, I., Ayatollahi, M., Bahrami, B., Martínez, M. P., & Garcia-Granada A. A. (2020). Mechanical behavior of an additively manufactured poly-carbonate specimen: tensile, flexural and mode I fracture properties. Rapid Prototyping Journal, 26(2), 267–277. https://doi.org/10.1108/RPJ-03-2019-0055
  • Kaya, Z., Balcıoğlu, H. E., & Gün, H. (2020). The effects of temperature and deformation rate on fracture behavior of S-2 glass/epoxy laminated composites. Polymer Composites, 41(11), 1–12. https://doi.org/10.1002/pc.25753
  • Fonseca, J., Ferreira, I. A., Moura, M. F. D., Machado, M., & Alves, J. L. (2019). Study of the interlaminar fracture under mode I loading on FFF printed parts. Composite Structures, 214, 316-324. https://doi.org/10.1016/j.compstruct.2019.02.005
  • Cantrell, J., Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J., Young, A., Jerez, A., Steinbach, D., Kroese, C., & Ifju, P. (2017). Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyping Journal, 23(4), 811-824. https://doi.org/10.1108/RPJ-03-2016-0042
  • Gardan, J., Makke, A., & Recho, N. (2016). A method to improve the fracture toughness using 3D printing by extrusion deposition. Procedia Structural Integrity, 2, 144-151. https://doi.org/10.1016/j.prostr.2016.06.019
  • Gardan, J., Makke, A., & Recho, N. (2019). Fracture Improvement by Reinforcing the Structure of Acrylonitrile Butadiene Styrene Parts Manufactured by Fused Deposition Modeling. 3D Printing and Additive Manufacturing, 6(2), 113-117. https://doi.org/10.1089/3dp.2017.0039
  • Boğa, C., Seyedzavvar, M., & Zehir, B. (2021). Experimental Investigation on the Effects of Internal Architecture on the Mechanical Properties of 3D Printed PLA Components. European Journal of Science and Technology, 24, 119-124. https://doi.org/10.31590/ejosat.901012
  • Moustabchir, H., Arbaoui, J., Zitouni, A., Hariri, S., & Dmytrakh, I. (2015). Numerical analysis of stress intensity factor and t-stress in pipeline of steel P264GH sumbitted to loading conditions. Journal of Theoretical and Applied Mechanics, 53(3), 665─672. https://doi.org/10.15632/jtam-pl.53.3.665
  • Uğuz, A. (1996). Kırılma Mekaniğine Giriş. Uludağ Üniversitesi Basımevi, Bursa, pp 123