Gürültü Bariyeri için Çevre Dostu Alternatif: Doğal Elyaf Takviyeli Kompozit Malzemeler

Son yıllarda, ürün-üretim döngülerinde sürdürülebilirlik yeşil mutabakat kapsamında üzerine en çok odaklanılan konulardan biridir. Kompozit malzemelerin kullanıldığı tüm sektörlerde çevre dostu malzemelerden üretilen ve geri dönüştürülebilir kompozitlere ilgi günden güne artmaktadır. Bu çalışma kapsamında, doğal elyaf takviyeli termoplastik kompozit malzemelerin akustik sektöründe kullanım potansiyeli incelenmiştir. Keten liflerinin tek doğrultuda yönlenmiş yerleşiminin sağlandığı keten/polipropilen tekyönlü prepreg yapılardan üretilen tabakalı kompozit malzemelerin ses yutum katsayısı ve ses iletim kaybı performansı ölçülmüştür. Alınan test sonuçları, keten/polipropilen tekyönlü prepreg yapılardan elde edilen tabakalı kompozit plakaların düz bir geometride kullanıldığı durumda kapalı gözenekli bir yapı sergilediğini ve bu nedenle darbe doğuşlu seslerin izolasyonunda kullanım potansiyeli olduğunu göstermektedir.

Environmentally Friendly Alternative for Noise Barriers: Natural Fiber Reinforced Composite Materials

In recent years, sustainability in product-production cycles has been one of the most focused topics within the scope of the green deal. There is a growing interest in recyclable composites produced from environmentally friendly materials within all sectors where composite materials are used. In this study, the potential of natural fiber reinforced thermoplastic composite materials to be used in the acoustic sector was investigated. Sound absorption coefficient and sound transmission loss performance of laminated composite plates produced from flax/polypropylene unidirectional prepreg structures, in which flax fibers are arranged in one direction, were examined. The test results show that the laminated composite plates produced from flax/polypropylene unidirectional prepreg structures exhibit a closed-pore structure when used in a flat geometry and therefore have the potential to be used in the isolation of structure-born sound.

___

  • Avérous, L., Le Digabel, F., 2006, Properties of biocomposites based on lignocellulosic fillers, Carbohydrate Polymers, 66(4): 480-493.
  • Goutianos, S., Peijs, T., Nystrom, B., Skrifvars, M., 2006, Development of flax fibre based textile reinforcements for composite applications, Applied Composite Materials, 13(4): 199-215.
  • Grohe, B., 2004, Heat conductivities of insulation mats based on water glass bonded non-textile hemp or flax fibres, Holz als Roh- und Werkstoff, 62(5): 352-357.
  • Hajj, N.E., Mboumba-Mamboundou, B., Dheilly, R.-M., Aboura, Z., Benzeggagh, M., Queneudec, M., 2011, Development of thermal insulating and sound absorbing agro-sourced materials from auto linked flax-tows, Industrial Crops and Products, 34(1): 921-928.
  • Hautala, M., Pasila, A., Pirilä, J., 2004, Use of hemp and flax in composite manufacture: A search for new production methods, Composites Part A: Applied Science and Manufacturing, 35(1): 11-16.
  • Holbery, J., Houston, D., 2006, Natural-fiber-reinforced polymer composites in automotive applications, JOM, 58(11): 80-86.
  • Kymäläinen, H.-R., Sjöberg, A.-M., 2008, Flax and hemp fibres as raw materials for thermal insulations, Building and Environment, 43(7): 1261-1269.
  • Liu, Q., Stuart, T., Hughes, M., Sharma, H.S.S., Lyons, G., 2007, Structural biocomposites from flax – part ii: The use of peg and pva as interfacial compatibilising agents, Composites Part A: Applied Science and Manufacturing, 38(5): 1403-1413.
  • Martin, N., Davies, P., Baley, C., 2014, Comparison of the properties of scutched flax and flax tow for composite material reinforcement, Industrial Crops and Products, 61(0): 284-292.
  • Martin, N., Davies, P., Baley, C., 2016, Evaluation of the potential of three non-woven flax fiber reinforcements: Spunlaced, needlepunched and paper process mats, Industrial Crops and Products, 83: 194-205.
  • Misnon, M.I., Islam, M.M., Epaarachchi, J.A., Lau, K.-t., 2014, Potentiality of utilising natural textile materials for engineering composites applications, Materials & Design, 59(0): 359-368.
  • Nick, A., Becker, U., Thoma, W., 2002, Improved acoustic behavior of interior parts of renewable resources in the automotive industry, Journal of Polymers and the Environment, 10(3): 115-118.
  • Shah, D.U., Schubel, P.J., Licence, P., Clifford, M.J., 2012, Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites, Composites Science and Technology, 72(15): 1909-1917.
  • Stuart, T., Liu, Q., Hughes, M., McCall, R.D., Sharma, H.S.S., Norton, A., 2006, Structural biocomposites from flax—part i: Effect of bio-technical fibre modification on composite properties, Composites Part A: Applied Science and Manufacturing, 37(3): 393-404.
  • Referans15: Summerscales, J., Virk, A., Hall, W., 2013, A review of bast fibres and their composites: Part 3 – modelling, Composites Part A: Applied Science and Manufacturing, 44(0): 132-139.
  • Referans16: Yan, L., Chouw, N., Jayaraman, K., 2014, Flax fibre and its composites – a review, Composites Part B: Engineering, 56(0): 296-317.
  • Referans17: Yang, W., Li, Y., 2012, Sound absorption performance of natural fibers and their composites, Science China Technological Sciences, 55(8): 2278-2283.
  • Referans18: Zimniewska, M., Myalski, J., Koziol, M., Mankowski, J., Bogacz, E., 2012, Natural fiber textile structures suitable for composite materials, Journal of Natural Fibers, 9(4): 229-239.