Farklı Aktivatör Ve Ham Madde Değişkenlerinin Geopolimer Hamurun Basınç Dayanımına Etkisinin İncelenmesi

Bu çalışmada geopolimer hamurların basınç dayanımı özelliklerine kullanılan ham madde ve alkali aktivatör özelliklerinin etkileri incelenmiştir. Geopolimer hamur numunelerinde ham madde olarak F sınıfı uçucu kül (UK) ve yüksek fırın cürufu (YFC) kullanılmıştır. Birbiri içerisinde değişik oranlarda ikamesi sağlanan (100U, 80U-20Y, 60U-40Y, 40U-60Y, 20U-80Y, 100Y) ham maddeler, Na2SiO3 ve NaOH (8, 10, 12 ve 14 M) kullanılarak aktive edilmiştir. Tüm örnekler, deney gününe kadar laboratuvar koşullarında kür edilmiştir. Üretilen 180 adet geopolimer hamur numunelerin 7 ve 28. günlerdeki basınç dayanımı değerleri incelenmiştir. Sonuçlar, kullanılan ham madde ve alkali aktivatör özelliklerinin değişmesiyle birlikte basınç dayanımı değerlerinin büyük oranda değiştiğini göstermiştir. YFC ikame oranının artmasıyla birlikte, basınç dayanımı değerlerinde ciddi artışlar gözlenmiştir. Ayrıca, F sınıfı UK kullanılarak üretilecek geopolimer örneklerin laboratuvar şartlarında yüksek dayanım özelliklerine sahip olmaları içi ısıl küre ihtiyaç duyduğu gözlenmiştir. Kullanılan ham madde tipinden bağımsız olarak, Na2SiO3 ile aktive edilen tüm örnekler, 28 günlük nihai dayanımının % 85’den fazlasını ilk 7 gün içerisinde kazanmıştır. Öte yandan, maksimum basınç dayanımının elde edilmesi için kullanılması gereken optimum NaOH konsantrasyonunun, bağlayıcı içeriğine bağlı olarak değişiklik gösterdiği saptanmıştır.

Investigation of the Effect of Different Activator and Raw Material Variables on Compressive Strength of Geopolymer Paste

In this study, the effects of the raw material and alkali activator properties on the compressive strength properties of geopolymer pastes were investigated. Class F fly ash (FA) and blast furnace slag (S) were used as raw materials in geopolymer paste samples. The raw materials (100U, 80U-20Y, 60U-40Y, 40U-60Y, 20U-80Y, 100Y) were activated using Na2SiO3 and NaOH (8, 10, 12 and 14 M). All samples were cured under laboratory conditions until the test day. The compressive strength values of geopolymer paste samples on the 7 and 28th days were examined. The results showed that with the change of raw material and alkali activator properties, the compressive strength values changed significantly. With the increase in the substitution rate of S, significant increases were observed in the compressive strength values. In addition, it was observed that geopolymer samples produced using class F FA need high temperature curing to have superior strength properties. Regardless of the type of raw material used, all samples activated with Na2SiO3 gained more than 85% of their 28-day ultimate strength in the first 7 days. On the other hand, it was determined that the optimum NaOH concentration that should be used to obtain the maximum compressive strength varies depending on the binder charecteristics.

___

  • U.S. Geological Survey (USGS), Mineral Commodity Summaries, Feb. 2014.
  • Amran, Y. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679.
  • Mehta, P. K., Monterio, P. J. M. (2006a). Concrete: Microstructure, Properties, and Materials, California, USA, 299-301 p.
  • Pacheco-Torgal, F., Cabeza, L. F., Labrincha, J., & De Magalhaes, A. G. (2014). Eco-efficient construction and building materials: life cycle assessment (LCA), eco-labelling and case studies. woodhead Publishing.
  • Marinković, S. B. (2013). Life cycle assessment (LCA) aspects of concrete. In Eco-efficient concrete (pp. 45-80). Woodhead Publishing.
  • Ženíšek, M., Pavlů, T., Fořtová, K., & Pazderka, J. (2020, February). Use of concrete dust as a partial cement replacement. In AIP Conference Proceedings (Vol. 2210, No. 1, p. 020019). AIP Publishing LLC.
  • Shalini, A., Gurunarayanan, G., & Sakthivel, S. (2016). Performance of rice husk ash in geopolymer concrete. Int J Innov Res Sci Tech, 2, 73-77.
  • https://www.asbcert.com.tr/bilgi-bankasi/makaleler/sera-gazi-etkisi-nedir/ B. K., & Mohanty, A. N. (2016). A mix design procedure for geopolymer concrete with fly ash. Journal of cleaner production, 133, 117-125.
  • Pavithra, P. E., Reddy, M. S., Dinakar, P., Rao, B. H., Satpathy, B. K., & Mohanty, A. N. (2016). A mix design procedure for geopolymer concrete with fly ash. Journal of cleaner production, 133, 117-125.
  • Ekinci, E., Türkmen, İ., Kantarci, F., & Karakoç, M. B. (2019). The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Construction and Building Materials, 201, 257-267.
  • Li, N., Shi, C., Zhang, Z., Wang, H., & Liu, Y. (2019). A review on mixture design methods for geopolymer concrete. Composites Part B: Engineering, 178, 107490.
  • Reddy, M. S., Dinakar, P., Rao, B. H. (2016). A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials. 234, 12-23.
  • Gao, K., Lin, K. L., Wang, D., Hwang, C. L., Tuan, B. L. A., Shiu, H. S., & Cheng, T. W. (2013). Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Construction and building materials, 48, 441-447.
  • Davidovits, J. (1999). Chemistry of Geopolymeric systems, terminology. in “GÉOPOLYMÈRE ‘99 international conference”, J. Geopolymer Institute, Saint-Quentin, France. France, 9, 40.
  • Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lukey, G. C. (2002). The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers. Chemical Engineering Journal, 89(1-3), 63-73.
  • Yuan, J., He, P., Jia, D., Yang, C., Yan, S., Yang, Z., ... & Zhou, Y. (2016). Effect of curing temperature and SiO2/K2O molar ratio on the performance of metakaolin-based geopolymers. Ceramics International, 42(14), 16184-16190.
  • Sarıcı T. (2019). Puzolan ile güçlendirilmiş inşaat ve yıkıntı atıklarının granüler dolgu olarak kullanılabilirliğinin değerlendirilmesi, (Doktora Tezi, İnönü Üniversitesi Fen Bilimleri Enstitüsü)
  • Rajarajeswari, A., & Dhinakaran, G. (2016). Compressive strength of GGBFS based GPC under thermal curing. Construction and Building Materials, 126, 552-559.
  • Yadollahi, M. M., Benli, A., & Demirboğa, R. (2015). The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Construction and Building Materials, 94, 767-774.
  • Kantarci, F., Türkmen, İ., & Ekinci, E. (2020). Influence of various factors on properties of geopolymer paste: A comparative study. Structural Concrete.
  • ASTM, C. (2016). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). Annual Book of ASTM Standards, 4.
  • Qiu, J., Zhao, Y., Xing, J., & Sun, X. (2019). Fly ash/blast furnace slag-based geopolymer as a potential binder for mine backfilling: effect of binder type and activator concentration. Advances in Materials Science and Engineering, 2019.
  • Ahmari, S., & Zhang, L. (2012). Production of eco-friendly bricks from copper mine tailings through geopolymerization. Construction and building materials, 29, 323-331.
  • Dong, M., Elchalakani, M., & Karrech, A. (2020). Development of high strength one-part geopolymer mortar using sodium metasilicate. Construction and Building Materials, 236, 117611.
  • Abhilash, P., Sashidhar, C., & Reddy, I. R. (2016). Strength properties of Fly ash and GGBS based Geopolymer Concrete. International Journal of ChemTech Research, 9(3), 350-356.
  • Ravikumar, D., Peethamparan, S., & Neithalath, N. (2010). Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder. Cement and Concrete Composites, 32(6), 399-410.
  • Bilenler Altundal, M. (2019). Yüksek Fırın Cürufu ve Uçucu Kül Katkılı Geopolimer Betonların% 5 Sülfürik Asit Etkisinde Mekanik Davranışı (Yüksek Lisans Tezi, İstanbul Gelişim Üniversitesi Fen Bilimleri Enstitüsü)