Evre Uyumlu Optik OFDM Sistemler için Karmaşık Aşırı Öğrenme Makinası Tabanlı Doğrusal Olmayan Denkleştirici

Radio-over-Fiber (RoF), 5G ve ötesi sistemlerde daha uzun iletişim mesafelerinde daha hızlı veri iletimi için alternatif bir çözüm olarak sunulmaktadır. RoF’un alt bileşenlerinden birisi olan optik haberleşme sistemlerinde evre uyumlu alıcıların kullanımı önemli kazanımlar sağlamaktadır. Bu çalışmada MQAM evre uyumlu-OFDM alıcılar için iletişim kanalının doğrusal ve doğrusal olmayan etkilerini kompanze etmek amacıyla karmaşık-Aşırı Öğrenme Makinesi (K-AÖM) tabanlı doğrusal olmayan denkleştirici önerilmiş ve Monte Carlo benzetimleri ile performans analizleri yapılmıştır.

Complex Extreme Learning Machine-based Nonlinear Equalizer for Coherent Optical OFDM Systems

Radio-over-Fiber (RoF) is offered as an alternative solution for faster data transmission over longer transmission distances in 5G and beyond systems. The use of coherent receivers provides significant gains in optical communication systems which is one of the sub-components of RoF. In this paper, a complex Extreme Learning Machine-based nonlinear equalizer was proposed to compensate for linear and nonlinear effects of the transmission channel for MQAM coherent-OFDM receivers, and performance analyzes were performed with Monte Carlo simulations.

___

  • Jia Z., Yu J., and Chang G. K. (2006). A full-duplex radio-over-fiber system based on optical carrier suppression andreuse. IEEE Photon. Technol. Lett., vol. 18, no. 16, pp. 1726–1728.
  • Kikuchi K. (2016). Fundamentals of coherent optical fiber communications. J. Lightw. Technol., vol. 34, no. 1, pp. 157-179.
  • Torres-Zugaide J., Aldaya I., Campuzano G., and Castano G. (2016). Hammerstein-based equalizer for nonlinear compensation in coherent OFDM long-reach PONs. International Conference on Transparent Optical Networks (ICTON), pp. 1-3, 2016, Trento, Italy.
  • Yazgan A., and Çavdar İ.H. (2014). Optimum link distance determination for a constant signal to noise ratio in M-ary PSK modulated coherent optical OFDM systems. TELECOMMUNICATION SYSTEMS, vol. 55, pp. 461-470.
  • Gao G., Zhang J., and Gu W. (2013). Analytical evaluation of practical DBPbased intra-channel nonlinearity compensators. IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 717–720.
  • Lowery A. J. (2007). Fiber nonlinearity pre-and post-compensation for long-haul optical links using OFDM. Opt. Exp., vol. 15, no. 20, pp. 12965–12970.
  • Giacoumidis E., Aldaya I., Jarajreh M. A., Tsokanos A., Thai Le S., Farjady F., Jaouën Y., Ellis A. D., and Doran N. J. (2014). Volterra-Based Reconfigurable Nonlinear Equalizer for Coherent OFDM. IEEE Photonics Technology Letters, vol. 26, no. 14, pp. 1383-1386.
  • Jarajreh M.A., Giacoumidis E., Aldaya I., Le S.T., Tsokanos A., Ghassemlooy Z., and Doran N. J. (2015). Artificial neural network nonlinear equalizer for coherent optical OFDM. IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 387-390.
  • Güner A, Alçin Ö.F. and Üstündağ M. (2016). Feature Analysis of Time and Frequency Domain for Automatic Modulation Classification. International Artificial Intelligence and Data Processing Symposium, pp. 404-408, 2016, Malatya, Türkiye.
  • Li M.B., Huang G.B., Saratchandran P. and Sundararajan H. (2005). Fully complex extreme learning machine. Neurocomputing, vol. 68, pp. 306-314.
  • Jiang L., Yan L., Yi A., Pan Y., Hao M., Pan W., Luo B., and Jaouen Y. (2018). Chromatic Dispersion, Nonlinear Parameter, and Modulation Format Monitoring Based on Godard’s Error for Coherent Optical Transmission Systems. IEEE Photonics Journal, vol. 10, no. 1, pp. 1-12.
  • Ma C. P. and Kuo J. W. (2004). Orthogonal frequency division multiplex with multi-level technology in optical storage application. Japanese Journal of Applied Physics, vol. 43, no. 4878.