Elektrikli Araçlarda Kablosuz Enerji Transferinin Batarya Şarj Durumuna Etkisi

Yerleşik piller, elektrikli araçları sürüş menzili ve şarj süresi açısından sınırlar. Bu çalışmada, kablosuz enerji transferi (KET) sistemleri ile şarj edilen elektrikli araçların batarya şarj durumları incelenmiştir. Batarya şarj durumlarına göre bu sistemlerin yeterliliği ve etkisi görülecektir, çünkü batarya şarj durumu aracın menzili ile doğrudan ilgilidir. Kablosuz şarjın pil durumuna etkisini ölçmek amacıyla yapılan simülasyonda güç tüketimini esas alan araç modeli ile basit bir pil modeli kullanıldı. Bu iki model de Mathworks kütüphanesinde bulunan araç ve batarya modelleridir. Şehir içi ve otoyol sürüş döngüleri olmak üzere iki farklı durumun benzetimi yapılmıştır. Farklı güç seviyelerinin batarya şarj durumuna etkisi gözlenmiştir. Şehir içi sürüşlerinde araç menzilinin sınırsız olması orta seviye güçlerde mümkündür. Araçların durma noktalarında bataryalara aktarılan şarj ile 20 kilowattlık güç seviyelerinde döngü boyunca tüketilen şarjın bu sistem tarafından şarj edilme miktarı ile aynı seviyelerdedir. Şarj etme sorunundan kurtulmak için orta güç seviyelerindeki kablosuz güç transferinin yeterli olduğu anlaşılmıştır. Otoyollarda ise kapsama alanı artırılarak sınırsız menzil elde etmek üzere bir yaklaşım oluşturulabilir. Sonuç olarak kablosuz enerji transferi yüksek kapasiteli bataryalara olan bağımlılığı önemli ölçüde azaltacak ve batarya şarj sürelerini en kısa süreye indirerek hem elektrikli araç maliyetlerini azaltacak hem de menzil kaygısını ortadan kaldıracaktır.

The Effect of the Wireless Power Transfer for Electric Vehicles on State of Charge

Built-in batteries limit electric vehicles in terms of the vehicle's final destination and battery recharge time. This study investigated the battery charge status of electric vehicles charged with wireless power transfer (WPT) systems. The adequacy and impact of these systems will be seen according to the battery charge status because the battery charge status is directly related to the range of the vehicle. A simple battery model and a vehicle model based on power consumption were used in the simulation to measure the effect of wireless charging on battery status. These two models are vehicle and battery models in the Mathworks library. Two different situations are simulated namely urban and highway driving cycles. Different power levels have been observed to affect the battery charge status. It is possible to have an unlimited vehicle range at medium power levels in urban driving. The charge transferred to the batteries at the stopping points of the vehicles and the charge consumed during the cycle at power levels of 20 kilowatts are at the same level as the amount charged by this system. It has been found that wireless power transfer at medium power levels is sufficient to get rid of the charging problem. On highways, an approach can be created to achieve unlimited range by increasing the coverage area. As a result, wireless energy transfer will significantly reduce the dependency on high-capacity batteries and reduce the battery charging times to the shortest time, reducing electric vehicle costs and eliminating range anxiety.

___

  • Beard, K. W. 2019. Linden’s handbook of batteries. McGraw-Hill Education,
  • Bosshard, R., Iruretagoyena, U. ve Kolar, J. W. 2016. Comprehensive evaluation of rectangular and double-D coil geometry for 50 kW/85 kHz IPT system. IEEE journal of emerging and selected topics in power electronics, 4:4, 1406-1415.
  • Budhia, M., Boys, J. T., Covic, G. A. ve Huang, C.-Y. 2011. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE transactions on industrial electronics, 60:1, 318-328.
  • Buja, G., Bertoluzzo, M. ve Dashora, H. K. 2016. Lumped track layout design for dynamic wireless charging of electric vehicles. IEEE Transactions on Industrial Electronics, 63:10, 6631-6640.
  • Chen, L., Nagendra, G. R., Boys, J. T. ve Covic, G. A. 2014. Double-coupled systems for IPT roadway applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3:1, 37-49.
  • Chen, M. ve Rincon-Mora, G. A. 2006. Accurate electrical battery model capable of predicting runtime and IV performance. IEEE transactions on energy conversion, 21:2, 504-511.
  • Chopra, S. ve Bauer, P. 2011. Driving range extension of EV with on-road contactless power transfer—A case study. IEEE transactions on industrial electronics, 60:1, 329-338.
  • Covic, G. A. ve Boys, J. T. 2013. Modern trends in inductive power transfer for transportation applications. IEEE journal of emerging and selected topics in power electronics, 1:1, 28-41.
  • Deng, J., Li, W., Nguyen, T. D., Li, S. ve Mi, C. C. 2015. Compact and efficient bipolar coupler for wireless power chargers: Design and analysis. IEEE Transactions on Power Electronics, 30:11, 6130-6140.
  • Department for Transport. (2018). Road traffic estimates great britain 2017. Great Britain: Dept. Transport.
  • Do Chung, Y., Lee, C. Y., Kang, H. K. ve Park, Y. G. 2014. Design consideration and efficiency comparison of wireless power transfer with HTS and cooled copper antennas for electric vehicle. IEEE Transactions on applied superconductivity, 25:3, 1-5.
  • Eghtesadi, M. (1990). Inductive power transfer to an electric vehicle-analytical model. 40th IEEE Conference on Vehicular Technology, IEEE, 100-104.
  • Ehsani, M., Gao, Y. ve Miller, J. M. 2007. Hybrid electric vehicles: Architecture and motor drives. Proceedings of the IEEE, 95:4, 719-728.
  • Etacheri, V., Marom, R., Elazari, R., Salitra, G. ve Aurbach, D. 2011. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4:9, 3243-3262.
  • Fujita, T., Yasuda, T. ve Akagi, H. 2017. A dynamic wireless power transfer system applicable to a stationary system. IEEE Transactions on Industry Applications, 53:4, 3748-3757.
  • Gerssen-Gondelach, S. J. ve Faaij, A. P. 2012. Performance of batteries for electric vehicles on short and longer term. Journal of power sources, 212, 111-129.
  • Gu, R., Malysz, P., Yang, H. ve Emadi, A. 2016. On the suitability of electrochemical-based modeling for lithium-ion batteries. IEEE Transactions on Transportation Electrification, 2:4, 417-431.
  • Gysen, B. L., Paulides, J. J., Janssen, J. L. ve Lomonova, E. A. 2009. Active electromagnetic suspension system for improved vehicle dynamics. IEEE transactions on vehicular technology, 59:3, 1156-1163.
  • Hariharan, K. S., Tagade, P. ve Ramachandran, S. 2017. Mathematical Modeling of Lithium Batteries: From Electrochemical Models to State Estimator Algorithms. Springer,
  • Honda, T. (2015). Development of handling performance control for SPORT HYBRID SH-AWD (0148-7191). Retrieved from
  • Huh, J., Lee, W., Cho, G.-H., Lee, B. ve Rim, C.-T. (2011). Characterization of novel inductive power transfer systems for online electric vehicles. 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, 1975-1979.
  • Kissin, M. L., Boys, J. T. ve Covic, G. A. 2009. Interphase mutual inductance in polyphase inductive power transfer systems. IEEE Transactions on Industrial Electronics, 56:7, 2393-2400.
  • Klontz, K., Esser, A., Bacon, R., Divan, D., Novotny, D. ve Lorenz, R. (1993). An electric vehicle charging system with’universal’inductive interface. Conference Record of the Power Conversion Conference-Yokohama 1993, IEEE, 227-232.
  • Koehn, P. ve Eckrich, M. (2004). Active steering-the BMW approach towards modern steering technology (0148-7191). Retrieved from
  • Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P. ve Soljačić, M. 2007. Wireless power transfer via strongly coupled magnetic resonances. science, 317:5834, 83-86.
  • Lee, S., Huh, J., Park, C., Choi, N.-S., Cho, G.-H. ve Rim, C.-T. (2010). Online electric vehicle using inductive power transfer system. 2010 IEEE Energy Conversion Congress and Exposition, IEEE, 1598-1601.
  • Li, S. ve Mi, C. C. 2014. Wireless power transfer for electric vehicle applications. IEEE journal of emerging and selected topics in power electronics, 3:1, 4-17.
  • Lin, F. Y., Covic, G. A. ve Boys, J. T. 2015. Evaluation of magnetic pad sizes and topologies for electric vehicle charging. IEEE Transactions on Power Electronics, 30:11, 6391-6407.
  • Lin, J. C. 2006. A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation. IEEE Antennas and Propagation Magazine, 48:1, 157-159.
  • Lotfi, N., Landers, R. G., Li, J. ve Park, J. 2016. Reduced-order electrochemical model-based SOC observer with output model uncertainty estimation. IEEE Transactions on Control Systems Technology, 25:4, 1217-1230.
  • Lukic, S. ve Pantic, Z. 2013. Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles. IEEE Electrification Magazine, 1:1, 57-64.
  • Machura, P., De Santis, V. ve Li, Q. 2020. Driving Range of Electric Vehicles Charged by Wireless Power Transfer. IEEE Transactions on Vehicular Technology.
  • Machura, P. ve Li, Q. 2019. A critical review on wireless charging for electric vehicles. Renewable and Sustainable Energy Reviews, 104, 209-234.
  • Mecke, R. ve Rathge, C. (2004). High frequency resonant inverter for contactless energy transmission over large air gap. 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), IEEE, 1737-1743.
  • Mi, C. ve Masrur, M. A. 2017. Hybrid electric vehicles: principles and applications with practical perspectives. John Wiley & Sons,
  • Miller, J. M. ve Daga, A. 2015. Elements of wireless power transfer essential to high power charging of heavy duty vehicles. IEEE Transactions on Transportation Electrification, 1:1, 26-39.
  • Mohamed, A. A., Meintz, A., Schrafel, P. ve Calabro, A. 2019. Testing and assessment of emfs and touch currents from 25-kW IPT system for medium-duty EVs. IEEE transactions on vehicular technology, 68:8, 7477-7487.
  • Moradewicz, A. J. ve Kazmierkowski, M. P. 2010. Contactless energy transfer system with FPGA-controlled resonant converter. IEEE transactions on industrial electronics, 57:9, 3181-3190.
  • Musavi, F., Edington, M. ve Eberle, W. (2012). Wireless power transfer: A survey of EV battery charging technologies. 2012 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, 1804-1810.
  • Nagatsuka, Y., Ehara, N., Kaneko, Y., Abe, S. ve Yasuda, T. (2010). Compact contactless power transfer system for electric vehicles. The 2010 International Power Electronics Conference-ECCE ASIA-, IEEE, 807-813.
  • Nguyen, T.-D., Li, S., Li, W. ve Mi, C. C. (2014). Feasibility study on bipolar pads for efficient wireless power chargers. 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014, IEEE, 1676-1682.
  • Ning, P., Miller, J. M., Onar, O. C., White, C. P. ve Marlino, L. D. (2013). A compact wireless charging system development. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, 3045-3050.
  • Protection, I. C. o. N.-I. R. 2009. ICNIRP statement on the “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”. Health physics, 97:3, 257-258.
  • Rong, P. ve Pedram, M. 2006. An analytical model for predicting the remaining battery capacity of lithium-ion batteries. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14:5, 441-451.
  • Sallán, J., Villa, J. L., Llombart, A. ve Sanz, J. F. 2009. Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE transactions on industrial electronics, 56:6, 2140-2149.
  • Schneider, J. 2016. Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology. SAE International J2954 Taskforce.
  • Sedwick, R. J. 2010. Long range inductive power transfer with superconducting oscillators. Annals of Physics, 325:2, 287-299.
  • Sellali, M., Abdeddaim, S., Betka, A., Djerdir, A., Drid, S. ve Tiar, M. 2019. Fuzzy-Super twisting control implementation of battery/super capacitor for electric vehicles. ISA transactions, 95, 243-253.
  • T.C. Karayolları Genel Müdürlüğü (2020). Yol Ağı Bilgileri. Retrieved from https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Kurumsal/YolAgi.aspx
  • T.C. Ulaştırma ve Altyapı Bakanlığı, S. G. D. B. 2018. Karayolları Genel Müdürlüğü 2019-2023 Stratejik Planı.
  • Tremblay, O. ve Dessaint, L.-A. 2009. Experimental validation of a battery dynamic model for EV applications. World electric vehicle journal, 3:2, 289-298.
  • Villa, J. L., Sallán, J., Llombart, A. ve Sanz, J. F. 2009. Design of a high frequency inductively coupled power transfer system for electric vehicle battery charge. Applied Energy, 86:3, 355-363.
  • Wang, D., Yang, F., Tsui, K.-L., Zhou, Q. ve Bae, S. J. 2016. Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter. IEEE Transactions on Instrumentation and Measurement, 65:6, 1282-1291.
  • Wu, H. H., Gilchrist, A., Sealy, K. D. ve Bronson, D. 2012. A high efficiency 5 kW inductive charger for EVs using dual side control. IEEE Transactions on Industrial Informatics, 8:3, 585-595.
  • Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M. ve Mithulananthan, N. 2015. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renewable and Sustainable Energy Reviews, 49, 365-385.
  • Zheng, L., Zhu, J., Wang, G., Lu, D. D.-C. ve He, T. 2018. Lithium-ion battery instantaneous available power prediction using surface lithium concentration of solid particles in a simplified electrochemical model. IEEE Transactions on Power Electronics, 33:11, 9551-9560.