Betonarme Yapıların Güçlendirilmesinde Kullanılan FRP Kompozitin Yapısal Performansa Etkisi

Son yıllarda betonarme yapılarda deprem sonrası yapılan araştırmalarda, betonarme yapı tasarımındaki koşulların dikkate alınmadığı gözlenmiştir. Betonarme yapı elemanlarında, farklı tasarım hataları ve yapısal düzensizliklerden dolayı, birçok hasar meydana gelmektedir. Deprem etkisi altında, bu yapılarda özellikle kolon-kiriş birleşim bölgelerinde donatının akma noktasını geçmesi ile büyük dönmelerin meydana gelmesi sonucu, ağır hasarlar oluşmaktadır. Günümüzde, bu hasarlı yapılar için farklı güçlendirme çalışmaları yapılmaktadır. İnşaat sektöründeki gelişmelerle birlikte bu hasarlı betonarme binaların Fiber Takviyeli Polimer (FRP) kompozitlerle güçlendirilmesi büyük bir önem kazanmıştır. Yüksek çekme mukavemetine sahip olan bu kompozitler, deprem etkisinde yüksek oranda enerji yutarak ve büyük deplasmanlar yaparak sünek davranış sergilerler. Yapılan çalışmada, FRP kompozitlerin betonarme yapı elemanlarındaki önemi ve mühendislik özellikleri üzerine etkileri araştırılmıştır. Bu kompozitlerin yapı taşıyıcı sistemlerinin farklı bölgelerinde farklı teknikler kullanarak uygulanmasıyla, taşıyıcı yapısal davranışlarının öneminin arttığı görülmüştür. Sonuç olarak, FRP kompozitlerin inşaat sektöründe yapı taşıyıcı sistemlerde güçlendirme çalışmalarında kullanılmasıyla birlikte yapının ekonomik ömrünün arttırılabileceği ve yapı elemanlarının kesit ve donatı oranlarında azalmalara gidilebileceği düşünülmektedir.

Effect of FRP Composite Used in Strengthening Reinforced Concrete Structures on Structural Performance

In recent years, in post-earthquake studies on reinforced concrete (RC) structures, it has been observed that the conditions in reinforced concrete structure design are not considered. Much damage occurs in these structures due to different design errors and structural irregularities. Under the influence of earthquakes, severe damages occur in the RC building elements, especially in column-beam joints, as a result of large rotations occurring when the reinforcement passes the yield point. Nowadays, different strengthening works are carried out for these damaged structures.Along with developments in the construction industry, the idea of strengthening buildings has gained great importance to reinforce these damaged RC buildings with fiber reinforced polymer (FRP) composites. These composites have high tensile strength, exhibit ductile behavior by absorbing high amounts of energy, and cause large displacements under earthquake conditions. In this study, the importance of FRP composites in RC building elements and their effects on engineering properties were investigated. It was observed that the importance of structural behaviors of these composites increases with the application of different techniques to using different parts of the building carrier systems. As a result, it is thought that by using FRP composites in reinforced works in building carrier systems in the construction sector, the economic life of the building can be increased, and the cross-section and reinforcement ratios of the building elements can be reduced.

___

  • Hollaway L.C, A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr Build Mater; 2010, 24(12):2419–45.
  • Mugahed Y., Amrana H., Rayed A., Raizal S.M., Rashidd, Alabduljabbara H, Hunge CC, Properties and applications of FRP in strengthening RC structures: A review, Structures, 2018, 16: 208-238.
  • Teng J.G., Chen Jian F., Smith Scott T., Lam L.,. FRP: strengthened RC structures. Front Phys: 2002. 266.
  • Nanni A., North american design guidelines for concrete reinfrocement and strengthening using FRP: Principles, applications and unresolved issues, Proceedings, International Conference of FRP Composites in Civil Engineering, Volume 1, Teng, J-G. (Ed.), 2001, ISBN 0-08-043945-4, pp. 61–72.
  • Ilki, A., Bedirhanoglu, I., and Kumbasar N. Behavior of FRP-Retrofitted Joints Built with Plain 1061 Bars and Low-Strength Concrete.” Journal of Composites for Construction, 15(3), 312–326, 2011.
  • Lampros N.K., Zoi T., Dionysios A., Bournas, Thanasis C., Triantafillou T., Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review, J. Compos. Constr., 2019,.23(1): 03118001.
  • Arboleda D.F.G., Carozzi A., Nanni, Poggi,C. Testing procedures for the uniaxial tensile characterization of fabric-reinforced cementitious matrix composites. Journal of Composite Constrction 2016, 20 (3): 04015063.
  • Bournas D.A., Pavese A., Tizani W. Tensile capacity of FRP anchors in connecting FRP and TRM sheets to concrete. Engineering Structure, 2015, 82 (1): 72–81.
  • Kaproń M., Van Gemert D. Sustainable construction: challenges, contribution of polymers, research arena. Restoration Build Monuments, 2013, 19(2–3):81–96.
  • Rasheed H, Abdalla JA, Hawileh R, Al-Tamimi A. Flexural Behavior of Reinforced Concrete Beams Strengthened with Externally Bonded Aluminum Alloy Plates. Eng Struct; 2017,147(15):473–85.
  • Hawileh R.A., Nawaz W., Abdalla J.A. Flexural behavior of reinforced concrete beams externally strengthened with Hardwire Steel-Fiber sheets. Constr Build Mater; 2018, 172:562–73.
  • Junaid M.T., Elbana A., Altoubat S., Flexural response of geopolymer and fiber reinforced geopolymer concrete beams reinforced with GFRP bars and strengthened using CFRP sheets, Structures 2020, vol. 24: 666-677.
  • Maranan G., Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars. Eng Struct; 2016.117:422–36.
  • Siddika A., Mamun Abdullah A., Alyousef R., Amranc Y.H.M., Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites:Journal of Building Engineering 2019, 25,100798.
  • Garcia, R, Jemaa, Y, Helal, Y, Guadagnini, M., and Pilakoutas, K. Seismic Strengthening of Severely Damaged Beam-Column RC Joints Using CFRP.” Journal of Composites for Construction, 2014, 18(2), 04013048.
  • İlki A, Kumbasar N, Karbon Lif Takviyeli Polimer Kompozit Malzeme ile Betonarme Elemanlarının Onarım ve Güçlendirilmesi, İMO Teknik Dergi, 2002. s. 2598- 2616,.
  • El-Hacha R, Soudki K,. Prestressed near-surface mounted fibre reinforced polymer reinforcement for concrete structures. A review, Can. J. Civ. Eng, 2013.. 40: 1127–1139.
  • Camata G., Spacone E., Al-Mahaidi R., Saouma V., Analysis of test specimens for cohesive near-bond failure of fiber-reinforced polymer-plated concrete, Jounal Composite Construction, 2004. 8(6): 528–538.
  • Dogangün, A. Performance of reinforced concrete buildings during the May 1, 2003 Bingöl Earthquake in Turkey." Engineering Structures 2004. 26(6): 841-856.
  • Celep Z., Erken A., Taskin B, Ilki A. Failures of masonry and concrete buildings during the March 8, 2010 Kovancılar and Palu (Elazığ) earthquakes in Turkey. Engineering Failure Analysis 2011.18(3): 868-889.
  • Baran, M., Tankut T., Experimental Study on Seismic Strengthening of Reinforced Concrete Frames by Precast Concrete Panels, ACI Structural Journal, 2011, 108(2): 227-237.
  • Erberik M.A. Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey. Engineering Structure 2008, 30(5):1360–1374.
  • Dazio A., Buzzini D., Trüb M, Nonlinear cyclic behavior of hybrid fiber concrete structural walls. Engineering Structures, 2008, 30: 3141–50.
  • Laura I, Patrick P, Rami E, Jean P. Seismic behavior of synthetic fiber-reinforced circular columns. ACI Materials Journal, 2014, 111(1): 189-200.
  • Anil Ö, Altın S, An experimental study on reinforced concrete partially infilled frames, Engineering Structures, 2007, 29: 449-460.
  • Asteris PG, Kakaletsis DJ, Chrysostomou CZ, Smyrou EE, Failure Modes of In-filled Frames, Electronic Journal of Structural Engineering, 2011, 11 (1):11-20.
  • Zarringol M. A comparative study on the efficiency of CFRP and GFRP in the improvement of compressive strength, acoustic impedance and bracing of filled and hollow concrete columns in different layers and ages. Journal of Sustainable Development; 2016, 9(5):110.
  • Ammar MA, Bond durability of basalt fibre-reinforced polymers (BFRP) bars under freeze-and-thaw conditions Ph.D thesis Dept. of Civil Engineering, Université Laval; 2014. p. 125,.
  • Dhawan V., Singh S, Singh I, Effect of Natural Fillers on Mechanical Properties of GFRP Composites, Journal of Composites, 2013, 792620.
  • Babatunde S.A, Review of strengthening techniques for masonry using fiber reinforced Polymers, Composite Structures, 2017,161, 246-255.
  • Gu D.S, Wu Y.F., Wu G., Wu Z.S., Plastic hinge analysis of FRP confined circular concrete columns. Constructions and Building Materials, 2012, 27(1): 223-233.
  • Y.H.M. Amran, R. Alyousef, R.S.M. Rashid, H. Alabduljabbar, C.C. Hung Properties and applications of FRP in strengthening RC structures: a review Structures, 2018, 16, 208-238.
  • Ozkul H., Yıldırım H., Strengthening of Steel Reinforced Concrete Beams with FRP, Second Japan-Turkey Workshop on Repair And Strengthening, 2000.
  • Liu H., Zhao X., Al-Mahaidi R. Effect of fatigue loading on bond strength between CFRP sheets and steel plates. Int J Struct Stab Dyn; 2010, 10(01):1–20.
  • Sahu NP, 2014. Study on aramid fibre and comparison with other composite materials. Int J;1:303–6.
  • Brothers H., Glass fiber reinforced polymer (GFRP) rebar Aslan 100. Seward, Neb. 2001.
  • Banibayat P., Patnaik A., Creep rupture performance of basalt fiber-reinforced polymer bars. J Aerosp Eng, 2013, 28(3):04014074.
  • Davies P., Reaud Y., Dussud L., Woerther P., Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations. Ocean Eng, 2011, 38(17):2208–14.
  • Palmieri A., Matthys S., Taerwe L., Experimental investigation on fire endurance of insulated concrete beams strengthened with near surface mounted FRP bar reinforcement. Compos Part B Eng; 2012, 43(3):885–95.
  • Zhou J., Bi F., Wang Z., Zhang J.,. Experimental investigation of size effect on mechanical properties of carbon fiber reinforced polymer (CFRP) confined concrete circular specimens. Constr Build Mater; 2016.127:643–52.
  • Meier U. Carbon fiber reinforced polymer cables: why? Why not? What if? Arab J Sci Eng;37(2):399–411. William F. Powers advanced materials and processes. 2000. p. 38–41, 2012.
  • Lubin G. Handbook of fiberglass and advanced plastics composites. RE Krieger Publishing Company; 1975.
  • Cabral F.S. Polymeric composite material reinforced with fibers used in civil engineering Features and application. LNEC, Lisbon, Portuguese: Scientific and technical information, 2005.
  • Nakayama Y.H.N, Kanakubo T, Bond behabior between deformed aramid fiber-reinforced plastic reinforcement and concrete. The 14th WorldConference on Earthquake Engineering, , Beijing, China 2008.
  • Sarasini F., Tirillò J., Ferrante L., Valente M., Valente T., Lampani L. Dropweight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos Part B Eng; 2014,59:204–20.
  • Yang Y., Liu J., Xiong G., Flexural behavior of wood beams strengthened with HFRP, Construction and Building Materials, vol. 2013, 43:118-124,
  • Zhang M.H., Sharif MSH, Lu G.. Impact resistance of high-strength fiber reinforced concrete”. Magazine of Concrete Research, 2007.59(3), 199–210.
  • Nasser M.Z, Hawileh RA, Abdalla JA Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review Engineering Structures vol. 2019,198: 109542.
  • Lawler J., Zampini D, Shah S. Microfiber and macrofiber hybrid fiber-reinforced concrete”. Journal of Materials in Civil Engineering, 2005, 17(5): 595-604.
  • Maalej M., Quek ST, Zhang J,. Behaviour of hybrid-fiber engineered cemetitious composites subjected to dynamic tensile loading and projectile ımpact. Journal of Materials in Civil Engineering ASCE, 2005,17(2): 143-152,.
  • Önal M.M, Strengthening reinforced concrete beams with CFRP and GFRP. Adv Mater Sci Eng:8. article 2014, 967964,.
  • Daniel Seismic Retrofit Schemes with FRP for Deficient RC Beam–Column Joints: State-of-the-Art Review Journal of Composites for Construction 2019, vol. 23.
  • Çöğürcü M.T, Yığma Yapıların Yatay Derz Güçlendirme Yöntemiyle Güçlendirilmesi Doktora Tezi İnşaat Mühendisliği Anabilim Dalı. 2007.
  • Lee C., Bonacci J., Thomas M., Acceîerated Corrosion and Repair of Reinforced Concrete Columns Using Carbon Fiber Reinforced Polymer Sheet, Canadian Journal of Civil Engineering 2000, 27: 941-948.
  • Nasser M.Z., Hawileh R.A., Abdalla JA Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review Engineering Structures vol. 2019, 198: 109542.
  • Din E. Adhesives. Determination of tensile lap-shear strength of bonded joint- 1465, 1994.
  • Shokrieh M.M, Omidi M.J, Tension behavior of unidirectional glass/epoxy composites under different strain rates. Compos Struct; 2009, 88(4):595–601.
  • Chen Y., Davalos JF, Ray I,. Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests. Jounal Composite Constrction; 2006,10(4):279–86.
  • Tsonos A.G Effectiveness of CFRP-jackets and RC-jackets in post-earthquake and pre-1131 earthquake retrofitting of beam–column subassemblages Engineering Structures, 2008, 30(3):1132 777–793.
  • Ilki A., Bedirhanoglu, I., and Kumbasar N. Behavior of FRP-Retrofitted Joints Built with Plain 1061 Bars and Low-Strength Concrete.” Journal of Composites for Construction, 2011,15(3), 312–326.
  • Del Vecchio C., Di Ludovico M., Balsamo A., Prota A., Manfredi, G., Dolce, M., Experimental Investigation of Exterior RC Beam-Column Joints Retrofitted with FRP Systems. Journal of Composites for Construction, 2014,18(4).
  • Yılmaz K., Akçil M., Çelik A., Fiber Takviyeli Polimer Uygulamalarında Yapışma Yüzeyi Kalitesinin Kompozit Performansına Etkisi, SAU Fen Bilimleri Enstitüsü Dergisi 6.Cilt, 2.Sayı, 2002.
  • Hosen M.A, Jumaat M.Z, Alengaram U.J, Ramli Sulong N.H CFRP strips for enhancing flexural performance of RC beams by SNSM strengthening techniqueConstruction and Building Materials, 2018, 165(20): 28-44.
  • Dong J., Wang Q., Guan Z., Structural behaviour of RC beams with external flexural and flexural–shear strengthening by FRP sheets, Composites Part B: Engineering, 2013, 44(1): 604-612.
  • Elghazy M, Refai A, Ebead U, Nanni A, Effect of corrosion damage on the flexural performance of RC beams strengthened with FRCM composites Composite Structures 2017,180(15): 994-1006.
  • Ariyachandra M.R.E.F, Gamage J.C.P.H, Mahaidi R., Kalfat R., Effects of surface roughness and bond enhancing techniques on flexural performance of CFRP/concrete composites Composite Structures, 2017, 180 (15): 994-1006.
  • Celep Z. Kumbasar N., Deprem Mühendisliğine Giriş ve Depreme Dayanıklı Yapı Tasarımı, Rehber Matbaacılık., İstanbul, 2000.
  • Yoshimura K., Kikuchi K., Kuroki M, Ozawa K, Masuda Y, Experimental Study on Seismic Behavior of RC Short Columns Strengthened by Carbon Fiber Sheets. Composite and Hybrid Structures: Proceedings of the 6th ASCCS International Conference on Steel-Concrete Composite Structures, Los Angeles, California: 2000, 927-934.
  • Başeğmez İ.H. Kesme Açısından Yetersiz Betonarme Kısa Kolonların Lifli Polimerler ile Depreme Karşı Güçlendirilmesi, İTÜ Fen Bilimleri, 2007.
  • Suleiman R, Repair and Strengthening of Reinforced Concrete Columns, Ph. D. Thesis in Middle East Technical University, Ankara, 1991.
  • Nicolae T, Gabriel O, Dorina I, Ioana E, Vlad M, Cătălin B, Fibre Reınforced Polymer Composıtes As Internal And External Reınforcements For Buıldıng Elements, Buletınul Instıtutuluı Polıtehnıc Dın Iaşı Publicat De Universitatea Tehnică Gheorghe Asachi” Din Iaşi Tomul LIV (LVIII), Fasc. 1. 2008.
  • Ghobarah, A, Said A. Shear strengthening of beam-column joints. Engineering Structures, 2002, 24(7): 881–888. 1052.
  • Eslami, A, Ronagh H, Experimental Investigation of an Appropriate Anchorage System 1025 for Flange-Bonded Carbon Fiber–Reinforced Polymers in Retrofitted RC Beam–Column 1026 Joints. Journal of Composites for Construction, 2014,18(4): 04013056.
  • Shahbazpanahi S., Hejazi F, Rahimipour A, Paknahad M, Experimental and Numerical Model of Interior Reinforced Concrete Beam–Column Joints Strengthened with Carbon Fiber-Reinforced Polymer Sheets Iran J Sci Technol Trans Civ Eng 2019, 43:405–417.
  • Realfonzo R., Napoli A, Pinilla JGR. Cyclic behavior of RC beam-column joints 1118 strengthened with FRP systems. Construction and Building Materials: 2014, 54, 282–297.
  • Antonopoulos C., Seismic strengthening of RC beam-column joints with advanced composites: Analytical modeling and experimental verification fib Symposium on Concrete Structures in Seismic Regions, 2003.
  • Le-Trung, K, Lee K, Lee J, Lee DH, Woo S. Experimental study of RC beam–1082 column joints strengthened using CFRP composites. Composites Part B: Engineering, 2010. 41(1): 1083 76–85.
  • Hadi, M.N.S, Tran, T.M, Retrofitting nonseismically detailed exterior beam–column 1053 joints using concrete covers together with CFRP jacket. Construction and Building Materials, 2014, 1054 63: 161–173.
  • Raoof S.M., Koutas L.N, Bournas D.A. Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams Construction and Building Materials 2017. vol. 151 (1):279-291.
  • Attari N., Youcef Y.S., Amziane S., Seismic performance of reinforced concrete beam–column joint strengthening by FRP sheets, Structures, 2019, 20: 353-364.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç