AMF'nin Kurak Koşullarda Buğdayın Büyümesi ve Fizyolojisine Olumlu Etkisi

Kuraklık, dünyada buğday verimini tehdit eden en önemli çevresel streslerden biridir. Küresel iklim değişikliği ile yağış rejiminin değişeceği ve kurak dönemlerin artacağı öngörülmektedir. Arbusküler mikorizal mantarların (AMF) kullanımı, buğdayda kuraklık toleransını artırarak bitkinin fizyolojik ve biyokimyasal özelliklerini etkilemekte ve verimi artırmaktadır. Farklı su dozlarına maruz bırakılan buğday (Triticum aestivum L.) bitkilerinin büyümesi ve fizyolojisi üzerine G.intraradices, Glomus aggregatum, Glomus mosseage, Glomus clarum, Glomus monosporus, Glomus deserticola, Glomus brasilianum, Glomus tunicatum ve Gigaspora margarita dokuz farklı AMF'nin etkilerini incelemek için çalışma yürütülmüştür. Torf içeren saksılara ekilen tohumlar tarlaya yerleştirilmiştir. Çalışmanın sonuçları değerlendirildiğinde, kuru koşullarda AMF uygulamasından yaprak alanı hariç tüm özellikler önemli ölçüde etkilenmiştir. Bitki boyu, kök uzunluğu, sürgün ve kök kuru ağırlığının en yüksek değerleri T3+AMF4 uygulaması ile elde edilmiştir. Sürgün taze ağırlık, SPAD ve bağıl su içeriği, en yüksek su (200 ml) ile kontrol koşullarında en yüksek değerlere ulaşmıştır. Fv / Fm değeri T4+AMF1'de potalarda daha iyi sonuç vermiştir. Artan su dozu ile kök taze ağırlığı ve yaprak alanı da artmış ve hem tohuma hem de köke AMF uygulaması en iyi sonuçları vermiştir. Yapraklarda en yüksek lipid peroksidasyon düzeyi T1+AMF4 uygulamasından elde edilmiştir. Ayrıca kurak koşullarda AMF uygulaması ile hem yapraklarda hem de köklerde prolin ve flavonoid içeriğinin arttığı gözlenmiştir.

The Positive Influence of AMF on Wheat Growth and Physiology under Drought Conditions

Drought is one of the most important environmental stresses threatening wheat yield in the world. With global climate change, it is predicted that the precipitation regime will change and dry periods will increase. The use of arbuscular mycorrhizal fungi (AMF) increases drought tolerance in wheat, affecting the physiological and biochemical properties of the plant and may increase yield. An experiment was conducted to examine the effects of nine different AMF, G.intraradices, Glomus aggregatum, Glomus mosseage, Glomus clarum, Glomus monosporus, Glomus deserticola, Glomus brasilianum, Glomus tunicatum, Gigaspora margarita on growth and physiology of wheat (Triticum aestivum L.) subjected to different water statues. The seeds were sown in pots containing peat were placed in field. When the results of the study were evaluated, all traits were significantly affected by AMF application in dry conditions, except the leaf area. The highest values of plant height, root length, shoot and root dry weight were obtained by application of T3+AMF4. Shoot fresh weight, SPAD and relative water content reached the highest values under control conditions with the highest water (200 ml). The Fv / Fm value gave better results in pots at T4+AMF1. Root fresh weight and leaf area also increased with increasing water dose, and application of AMF to both seed and root gave the best results. The highest lipid peroxidation level in leaves was obtained from T1 + AMF4 application. In addition, it was observed that the proline and flavonoid content in both leaves and roots increased with AMF application in arid conditions.

___

  • Abdelmoneim, T.S., Tarek, A., Moussa, A., Almaghrabi, O., Hassan, A., Alzahrani, S., Abdelbagi, I. (2014). Increasing Plant Tolerance to Drought Stress by Inoculation with Arbuscular Mycorrhizal Fungi. Life Sci J., 1(1): 10-17.
  • Ahanger, M.A., Agarwal, R.M. (2017). Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.). Protoplasma, 254 (4): 1471-1486.
  • Ahanger, M.A., Tittal, M., Mir, R.A., Agarwal, R.M. (2017). Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma, 254 (5): 1953- 1963.
  • Aliasgharzad, N., Neyshabouri, M.R., Salimi, G. (2006). Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia, 61 (Suppl. 19): 324-328
  • Ali, M.B., Hahn, E., Paek, K. (2005). Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem., 43: 213-223.
  • Al-Karaki, G.N., Al-Raddad, A. (1997). Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of wheat genotypes differing in drought resistance. Mycorrhiza, 7:83-88
  • Al-Karaki, G.N., Clark, R.B. (1998). Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr., 21:263-276
  • Al-Karaki, G., McMichael, B., Zak, J. (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14: 263-269.
  • Allen, M.F. (1982). Influence of vesicular-arbuscular mycorrhiza on water movement through Buteloua gracilis LAG ex STEUD. New Phytol., 91:191-196
  • Allen, M.F. (1991). The ecology of mycorrhiza. Cambridge University Press, Cambridge.
  • Amiri, R., Nikbakht, A., Etemadi, N. (2015). Alleviation of drought stress on rose geranium [Pelargonium graveolen (L.) Herit] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation. Sci. Hort., 197:373-380
  • Aslanpour, M., Baneh, H.D., Tehranifar, A., Shoor, M. (2019). Effect of water stress on growth traits of roots and shoots (fresh and dry weights, and amount of water) of the white seedless grape. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 10(2):169-181
  • Asrar, A.A., Abdel-Fattah, G.M., Elhindi, K.M. (2012). Improving growth, flower yield, and water relations of snapdragon Antirhinum majus L. plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica, 50: 305-316
  • Augé, R.M. (2001). Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza, 11: 3-42.
  • Azcon, R., Ocampo, J.A. (1981). Factors affecting vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol., 87: 677-685. Balestrini, R., Lumini, E. (2018). Focus on mycorrhizal symbioses. Applied Soil Ecology, 123:299-304.
  • Balliu, A., Sallaku, G., Rewald, B. (2015). AMF Inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7:15967-15981
  • Barr, H.D., Weatherley, P.E. (1962). A Re-Examination of the Relative Turgidity Techniques for Estimating Water Deficits in Leaves. Australian Journal of Biological Sciences, 15: 413-428.
  • Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39:205-207
  • Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N., Zhang, L. (2009). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci., 10
  • Begum, N., Ahanger, M.A., Su, Y., Lei, Y., Mustafa, N.S.A., Ahmad, P., Zhang, L. (2019). Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants, 8:579. doi:10.3390/plants8120579
  • Behrooz, A., Vahdati, K., Rejali, F., Lotfi, M., Sarikhani, S., Leslie, C. (2019). Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience, 54:1087-1092
  • Beltrano, J., Ronco, M.G. (2008). Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20(1): 29-37.
  • Bernardo, L., Carletti, P., Badeck, F.W., Rizza, F., Morcia, C., Ghizzoni, R., Rouphael, Y., Colla, G., Terzi, V., Lucini, L. (2019). Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiol. Biochem., 137: 203-212.
  • Boyer, L.R., Brain, P. Xu, X.M., Jeffries, P. (2014). Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water. Mycorrhiza, 25 (3): 215-227
  • Budak, B., Khavalti, M.A., Özkan, Ş.S. (2017). The Usage of Native Arbuscular Mycorrhizal Fungi (AMF) in Drought Areas and Low-Input Crop Production Systems. ADÜ Ziraat Fak. Derg., 14(2): 69-73
  • Cakmak, I., Horst, W.J. (1991). Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in rot tips of soybean (Glycine max). Physiologia Plantarum, 83:463-468.
  • Chitarra, W., Maserti, B., Gambino, G. Guerrieri, E., Balestrini, R. (2016). Arbuscular mycorrhizal symbiosis-mediated tomato tolerance to drought. Plant Signal Behav., 11: 1009-1023
  • Daryanto, S., Wang, L., Jacinthe, P.A. (2016). Global synthesis of drought effects on maize and wheat production. PLoS One, 11:e0156362. doi: 10.1371/journal. pone.0156362
  • Dewanto, V., Wu, X., Adom, K.K., Liu, R.H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50: 3010-3014.
  • Dietz, K.J., Foyer, C (1986). The relationship between phosphate and photosynthesis in leaves. Reversibility of the effects of phosphate deficiency on photosynthesis. Planta, 167: 376-381
  • Duc, N.H. (2017). Impact of arbuscular mycorrhizal fungi on plant tolerance to some abiotic stresses and phytopathogens. PhD dissertation. Szent István University. Godollo. 122 p.
  • Durán, P., Acuña, J., Armada, E., López-Castillo, O., Cornejo, P., Mora, M., Azcón, R. (2016). Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. J Soil Sci Plant Nutr., 16(1): 211-225
  • Ehsan Mahdavi, S.M., Salehi, H., Zarei, M. (2018). Can arbuscular mycorrhizal fungi ameliorate the adverse effects of deficit irrigation on tall fescue (Festuca arundinacea Schreb.)? J Soil Sci Plant Nut., 18: 636-652
  • Fernández-Lizarazo, J.C., Moreno-Fonseca, L.P. (2016). Mechanisms for tolerance to water deficit stress in plants inoculated with arbuscular mycorrhizal fungi. A review. Agron Colomb., 34(2): 179-189
  • Fouad, M.O., Essahibi, A., Benhiba, L., Qaddoury, A. (2014). Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res., 12: 763-771
  • Ganugi, P., Masoni, A., Pietramellara, G., Benedettelli, S. (2019). A review of studies from the last twenty years on plant-arbuscular mycorrhizal fungi associations and their use for wheat crops. Agronomy, 9(12): 840.
  • Goicoechea, N., Merino, S., Sánchez-Díaz, M. (2005). Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. J. Plant Physiol., 162: 27-35.
  • Gould, K.S., Kuhn, D.N., Lee, DW. (1995). Oberbauer ST. Why leaves are sometimes red. Nature, 378: 241-2.
  • Grümberg, B.C., María, U.C., Shroeder, A., Vargas-Gil, S., Luna, C.M. (2015). The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol Fert Soils, 51: 1-10
  • Hardie, K. (1985). The effect of removal of extraradical hyphae on water uptake by VAM plants. New Phytol., 101: 677-684
  • Hasanuzzaman, M., Gill, S.S., Fujita, M. (2013). Physiological role of nitric oxide in plants grown under adverse environmental conditions, in plant acclimation to environmental stress. 269-322. Tuteja N and SS Gill (eds). (NY: Springer Science+Business Media). doi: 10.1007/978-1-4614-5001-6_11
  • Huang, Y.M., Zou, Y.N., Wu, Q.S. (2017). Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci Rep., 7:42335. Available at: http://doi: 10.1038/srep42335 (Accessed: 16 May 2021)
  • Impa, S.M., Nadaradjan, S., Jagadish, S.V.K. (2012). Drought stress induced reactive oxygen species and anti-oxidants in plants, in Abiotic stress responses in plants: metabolism, productivity and sustainability. 131-147. Ahmad, P., Prasad, M.N.V. (eds). (LLC: Springer Science+ Business Media). doi: 10.1007/978-1-4614-0634-1_7
  • Ingraffia, R., Amato, G., Frenda, A.S., Giambalvo, D. (2019). Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLoS ONE, 14(3): e0213672
  • Jacobsen, I., Abbott, L.K., Robson, A.D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus flow into roots. New Phytol., 120:371-3804
  • Kapulnik, Y., Kushnir, U. (1991). Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular-arbuscular mycorrhizae fungi. Euphytica, 56: 27-36
  • Lacan, D., Baccou, J.C. (1998). High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits. Planta, 204: 377-382.
  • Liu, T., Sheng, M., Wang, C.Y., Chen, H., Li, Z., Tang, M. (2015). Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica, 53: 250-258
  • Manjunath, A., Habte, M. (1991). Relationship between mycorrhizal dependency and rate variables associated with phosphorus uptake, utilization and growth. Commun Soil Sci Plant Anal., 22:1423-1437
  • Mathur, N., Vyas, A. (2000). Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritana Lam under water stress. J. Arid Environ., 45:191-195.
  • Mercy, M.A., Shivanshanker, G., Bagyaraj, D.J. (1990). Mycorrhizal colonization in cowpea is host dependent and heritable. Plant Soil., 121: 292-294
  • Metwally, A., Azooz, M., Nafady, N., El-Enany, A. (2019). Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on wheat plants (Triticum aestivum L.). Applied Ecology and Environmental Research, 17 (6):13713-13727
  • Michelsen, A., Rosendahl, S. (1990). The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlings. Plant Soil., 124:7-13.
  • Mirshad, P.P., Puthur, J.T. (2016). Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass Saccharum arundinaceum. Retz Environ Monit Assess., 188: 425. doi: 10.1007/ s10661-016-5428-7
  • Neumann, E., George, E. (2009). The effect of arbuscular mycorrhizal root colonization on growth and nutrient uptake of two different cowpea (Vigna unguiculata [L.] Walp.) genotypes exposed to drought stress. Emir J Food Agric., 21:1-17
  • Olawuyi, O.J., Odebode, A.C., Babalola, B.J., Afolayan, E.T., Onu, C.P. (2014). Potentials of Arbuscular Mycorrhiza Fungus in Tolerating Drought in Maize (Zea mays L). American Journal of Plant Sciences, 5:779-786
  • Pal, A., Pandey, S. (2016). Role of arbuscular mycorrhizal fungi on plant growth and reclamation of barren soil with wheat (Triticum aestivum L.) crop. Int J Soil Sci., 12: 25-31.
  • Pavithra, D., Yapa, N. (2018). Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundwater for Sustainable Development, 7: 490-494
  • Pedranzani, H., RodrãGuez-Rivera, M., GutiaRrez, M., Porcel, R., Hause, B., Ruiz-Lozano, J.M. (2016). Arbuscular mycorrhizal symbiosis regulates physiology and performance of
  • Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza, 26:141-152.
  • Porcel, R., Ruiz-Lozano, J.M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55:1743-1750
  • Posta, K., Duc, N.H. (2020). Benefits of Arbuscular Mycorrhizal Fungi Application to Crop Production under Water Scarcity. Drought Detect Solut Available online: Available at: https://www.intechopen.com/books/droughtdetection-and-solutions/benefits-of- arbuscular-mycorrhizal-fungi-application-to-crop-production-underwater-scarcity (Accessed: 14 May 2021)
  • Quiroga. G., Erice, G., Aroca, R., Chaumont, F., Ruiz-Lozano, J.M. (2017). Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci., (8):1056. Available at: http://doi: 10.3389/fpls.2017.01056 (Accessed: 16 May 2021)
  • Rani, B. (2016). Effect of arbuscular mycorrhiza fungi on biochemical parameters in wheat Triticum aestivum L. under drought conditions. Doctoral dissertation, CCSHAU, Hisar.
  • Rapparini, F., Penuelas, J. (2014). Mycorrhizal fungi to alleviate drought stress on plant growth. In: Use of Microbes for the Alleviation of Soil Stress, 21-42. Miransari M (eds). Springer, New York, NY
  • Ruiz-Lozano, J.M., Azon, R., Gomez, M. (1995). Effects of arbuscular- mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol., 61:456-460
  • Ruiz-Lozano, J.M., Aroca, R., Zamarreño, Á.M., Molina, S., Andreo-Jiménez, B., Porcel, R., García-Mina, J.M., Ruyter-Spira, C., López-Ráez, J.A. (2015). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ., 39 (2): 441-452. doi: 10.1111/pce.12631
  • Ruiz-Sánchez, M., Armada, E., Muñoz, Y., de Salamone, I.E.G., Aroca, R., Ruiz-Lozano, J.M., Azcón, R. (2011). Azospirillum and arbuscular mycorrhizal colonization enhanced rice growth and physiological traits under well-watered and drought conditions. J. Plant Physiol., 168: 1031-1037
  • Sánchez-Blanco, M.J., Fernández, T., Morales, M.A., Morte, A., Alarcón, J.J. (2004). Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J. Plant Physiol., 161: 675-682.
  • Sharma, N., Yadav, K., Aggarwal, A. (2017). Role of potassium and arbuscular mycorrhizal fungi in alleviation of water stress on Vigna mungo. Environmental and Experimental Biology, 15:15-24
  • SPSS Inc. (1999) SPSS for Windows: Base 10.0 Applications Guide. Chicago, Illinois
  • Tuo, X.Q., He, L., Zou, Y.N. (2017). Alleviation of drought stress in white clover after inoculation with arbuscular mycorrhizal fungi. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45:220-224
  • Wu, Q.S., Zou, Y.N., Abd-Allah, E.F. (2014). Mycorrhizal association and ROS in plants. 453-475. In: Ahmad P. (eds.). Oxidative Damage to Plants Antioxidant. Academic Press.
  • Yang, Y., Tang, M., Sulpice, R., Chen, H., Tian, S., Ban, Y. (2014). Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia, L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul., 33:612-625.
  • Yücel, C., Özkan, H., Ortaş, I., Yağbasanlar, T. (2009). Screening of wild emmer wheat accessions (Triticum turgidum subsp. dicoccoides) for mycorrhizal dependency. Turk J Agric For., 33:513-523
  • Zadoks, J.C., Chang, T.T., Konzak, C.F. (1974). A decimal code for the growth stage of cereals. Weed Res., 14:415-421.
  • Zhao, R., Guo, W., Bi, N., Guo, J., Wang, L., Zhao, J., Zhang, J. (2015). Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays, L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol., 88:41-49.
  • Zhu, X., Song, F., Liu, S. (2011). Arbuscular mycorrhiza impacts on drought stress of mazize oplants by lipid peroxidation, proline content and activity of antioxidant system. Journal of Food, Agriculture & Environment, 9(2):583-587.
  • Abbaspour, H., Saeidi-Sar, S., Afshari, H., Abdel-Wahhab, M. (2012). Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J. Plant Physiol., 169:704-709.
  • Olsson, P.A., Thingstrub, I., Jakobsen, I., Baath, E. (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem., 31:1879-1887
  • Ruiz-Lozano, J.M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New Perspectives Molecular Stud Mycorrhiza, 13:309-317
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç