Agar-Kaplı Manyetik Nanopartiküller Üzerine Adsorpsiyon ile Amilaz İmmobilizasyonu

Bu çalışmada, inert atmosfer altında oda sıcaklığında agar içeren sulu bir çözelti içinde ferrik ve ferröz iyonlarının birlikte çökeltildiği, manyetik demir oksit nanopartiküllerin eşzamanlı sentezi ve kaplanması için yeni bir yöntem kullanıldı. X-ışını kırınımı (XRD) analizi, sentezlenen nanopartiküllerin kübik yapıya ve 9.38 ile 10.11 nm arasında değişen kristalit boyutuna sahip saf Fe3O4 olduğunu gösterdi. Taramalı elektron mikroskobu (SEM) görüntüleri, yüzey kaplama malzemesi konsantrasyonu arttıkça artan yüzey pürüzlülüğünü gösterdi. Üretilen manyetik partiküller adsorpsiyon yöntemiyle α-amilaz immobilizasyonu için destek olarak kullanıldı. Sonikasyon, immobilizasyon süresi (0,5; 1; 2; 4; 8; 16 saat), yüzey kaplama malzemesi konsantrasyonu (0; 0,5; %1 w/v agar), immobilizasyon pH'ının (pH 3,4,5,6, 7) protein yüklemesi, enzim aktivitesi ve spesifik aktivite üzerine etkileri araştırıldı. Sonikasyon, amilaz immobilizasyonunu arttırmadı. Enzimin spesifik aktivitesine dayalı olarak, optimum adsorpsiyon pH 4 ve 5'te 4 saatlik immobilizasyon süresinde elde edildi; bu koşullarda serbest α−amilaza kıyasla spesifik aktivitede 3 kat artış ve bağıl aktivitede %360 artış ölçüldü.

Immobilization of Amylases via Adsorption on Agar-Coated Magnetic Nanoparticles

In this study, a new method for simultaneous synthesis and coating of magnetic iron oxide nanoparticles was employed, where ferric and ferrous ions were co-precipitated within an aqueous solution containing agar at room temperature under inert atmosphere. X-ray diffraction (XRD) analysis indicated that synthesized nanoparticles were pure Fe3O4 with a cubic structure and crystallite size ranging between 9.38 and 10.11 nm. The scanning electron microscope (SEM) images demonstrated the increasing surface roughness as concentration of surface coating material increased. The produced magnetic particles were used as a support for α−amylase immobilization by adsorption method. Effects of sonication, immobilization time (0.5; 1; 2; 4; 8; 16 h) concentration of surface coating material (0; 0.5; 1% w/v agar), immobilization pH (pH 3,4,5,6,7) on protein loading, enzyme activity and specific activity were investigated. Sonication did not enhance amylase immobilization. Based on the specific activity of the enzyme, the optimum adsorption was achieved at pH 4 and 5 after 4h-immobilization time, where, compared to the free α−amylase, a 3-fold increase in specific activity and 360% increase in relative activity was measured, respectively.

___

  • Bai, H., Zhaoyang, L., Darren D.S., (2011). Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination. Separation and Purification Technology (81), 392-399. Technology (81), 392-399.
  • Bilal, M., Asgher, M., (2015). Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol- alginate beads. Chemistry Central Journal (9)1, 47.
  • Bradford, M.M., (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein. Analytical Biochemistry, 248-254.
  • Datta, S., Christena, L.R., Rajaram, Y.R.S., (2012). Enzyme immobilization: an overview on techniques and support materials, 3 Biotech (3), 1-9.
  • Jiang, D., Long, S., Huang J., Xiao, H., Zhou, J., (2016). Immobilization of Pycnoporous sanguineus laccase on magnetic chitosan microsphere, Biochem Eng. (25), 15-23.
  • Junior, J.C.Q., Ferrazrezi, A.L., Borges, J.P., Brito, R.R., Gomes, E., Silva, R., Guisan, J.M., Boscolo, M., (2016). Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism. Bioprocess and Biosystems Engineering (39), 1933-1943.
  • Koeller, K.M., Wong, C.H., (2001). Enzymes for chemical synthesis. Nature (409), 232-240.
  • Li, X., Zhu, H., Feng, J., Zhang, X., Deng, B., Zhou, B., Zhang, H., Xue, D., Li, F., Mellors, N.J., Li, Y., Peng, Y., (2013). One-pot polyol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon (60), 488-497.
  • Liu, D.M., Chen, J., Shi, Y.P., (2018). Advances on methods and easy separated support materials for enzyme immobilization. TrAC Trends in Analytical Chemistry (102), 332-342.
  • Ranjbakhsh, E., Bordbar, A.K., Abbasi, M., Khosropour, A.R., Shams, E., (2012). Enhancement of stability and catalytic activity of immobilized lipaseon silica-coated modified magnetite nanoparticles. Chemical Engineering Journal (179), 272-276.
  • Sahutoglu, A.S., Akgul, C., (2015). Immobilization of Aspergillus oryzae alpha amylase and Aspergillus niger glucoamylase as cross-linked enzyme aggregates. Chemical Papers (69), 433-439.
  • Schmid, A., Dordick, J.S., Hauer, B., Kiener, A., Wubbolts, M., Witholt, B., (2001). Industrial biocatalysis today and tomorrow. Nature (409). 258-268.
  • Sohrabi, N., Rasouli, N., Torkzadeh, M., (2013). Enhanced stability and catalytic activity of immobilized α−amylase on modified Fe3O4 nanoparticles. Chemical Engineering Journal (240), 426-433.
  • Xiao, Z., Storms, R., Tsang, A., (2006). A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Analytical Biochemistry (351). 146-148.
  • Zhu, Y.T., Ren, X.Y., Liu, Y.M., Wei, Y., Qing, L.S., Liao, X., (2014). Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays. Material Science and Engineering: C (38).278-285.