617 Alaşımının Kuru Hava Atmosferindeki Yüksek Sıcaklıklarda Oksidasyon Davranışları

Çok yüksek sıcaklık reaktörleri (VHTR), elektrik ve hidrojen üretimi konusunda en önemli IV. nesil reaktörlerinden biridir. IV. Nesil reaktörleri, özellikle çok yüksek sıcaklık reaktörlerinin (VHTR) yapısında birçok farklı malzeme düşünülmektedir. Nükleer reaktör aday malzemesi 617 alaşımının yüksek sıcaklıktaki oksidasyonu farklı sıcaklıklarda incelenmiştir. Kontrollü hava ortamlarında 24 saat boyunca 800 ° C ile 1000 ° C arasındaki sıcaklıklarda (100 ° C 'lik adımlarla) izotermal olarak oksidasyon hızı üzerindeki oksidasyon/korozyon etkisinin analizini Termogravimetrik analiz (TGA) ile incelendi. Oksidasyon öncesi ve sonrası (900 ° C) sıcaklıklardaki, malzemenin yüzeyleri hakkında elementel ve kimyasal bilgisi edinmek için yüzey analiz tekniği olan X-ray Fotoelektron Spektroskopisi (XPS) kullanıldı ve yüzey morfolojisini incelemek için Atomik Kuvvet Mikroskobu (AFM) kullanılmıştır. Oksidasyon davranışı, Wagner'in parabolik oksidasyon kinetik hızı yasasını ile ve Arrhenius denkleminin çözümünü yaparak ilgili verilerle bağlantılı olarak, aktivasyon enerjisi 800 ° C ile 1000 ° C için 203.91 kJ/mol bulunmuştur. TGA sonuçlarına bakıldığında, 800°C ile 1000°C arasında kütle artışı görülmüştür. XPS tablosundaki verilere göre 617 alaşımı numunesinin üzerindeki Cr2O3 tabakasında sıcaklıkla birlikte artış görülmüştür. AFM analizi göz önüne alındığında, sıcaklık arttıkça açıklıklar, ara boşluklar ve tanecikli yapılar sıcaklığa bağlı olarak artış göstermiştir. Şekiller, dış oksit ölçeklerinin ve sıcaklıklarla tane sınırlarının sürekli büyümesini sırayla göstermektedir. 617 alaşımının oksit morfolojisi ve yapısı, ortamlardan güçlü bir şekilde etkilenmiştir. Sıcaklık arttıkça oksidasyon derinliği artar. Gözenek, boşluk ve tane sınırlarının oluşumuna atfedilen artan oksidasyon sıcaklıkları, yüksek sıcaklıklara maruz kalmanın etkisiyle oluşmuştur.

Oxidation Behaviors of Alloy 617 at High Temperatures in Dry Air Atmosphere

A very high temperature reactors (VHTR), the most important of the generation IV reactors for producing electricity and hydrogen production. Variety materials reviewed for Generation IV reactor concept, especially very high temperature reactors (VHTR). The high temperature oxidation of the nuclear reactor candidate material 617 alloy was investigated at different temperatures. The analysis of the oxidation/corrosion effect on the oxidation rate isothermally at temperatures between 800 °C and 1000 °C (in 100 °C steps) for 24 hours in controlled air environments was investigated by Thermogravimetric analysis (TGA). X-ray Photoelectron Spectroscopy (XPS), a surface analysis technique, was used to obtain elemental and chemical information about the surfaces of the material at pre- and post-oxidation (900 °C) temperatures and Atomic Force Microscopy (AFM) was used to examine the surface morphology. The oxidation behavior, in conjunction with Wagner's law of parabolic oxidation kinetic rate and by solving the Arrhenius equation, , the activation energy was found to be 203.91 kJ/mol for 800 °C to 1000 °C. Looking at the TGA results, mass increase was observed between 800°C and 1000°C. According to the data in the XPS table, the Cr2O3 layer on the 617-alloy sample increased with temperature. Considering the AFM analysis, as the temperature increased, the apertures, interspaces and granular structures increased depending on the temperature. The figures show, in sequence, the continuous growth of outer oxide scales and grain boundaries with temperatures. The oxide morphology and structure of the 617 alloy were strongly influenced by the environments. As the temperature increases, the oxidation depth increases. The increased oxidation temperatures attributed to the formation of pores, voids, and grain boundaries were generated by exposure to high temperatures.

___

  • Al-Hatab, K. A., Al-Bukhaiti, M., & Krupp, U. (2014). Cyclic oxidation kinetics and oxide scale morphologies developed on alloy 617. Applied Surface Science, 275-279.
  • Bates, H. G. (1984). The Corrosion Behavior of High-Temperature Alloys During Exposure for Times up to 10 000 h in Prototype Nuclear Process Helium at 700 to 900°C. Nuclear Technology, 66(2), 415- 428.
  • Benz, J., Lillo, T., & Wright, R. (2013). Aging of Alloy 617 at 650 and 750 °. Idaho Falls, Idaho: daho National Laboratory.
  • Cabet, C., & Rouillard, F. (2009). Corrosion Issues of High Temperature Reactor Structural Metallic Materials. Journal of Engineering for Gas Turbines and Power, 131, 062902-1-062902-6.
  • Cabet, C., & Rouillard, F. (2009). Corrosion of high temperature metallic materials in VHTR. Journal of Nuclear Materials, 392(2), 235-242.
  • Cabet, C., Chapovaloff, J., Rauillard, F., Girardin, G., Kaczorowski, D., Wolski, K., & Pijolat, M. (2008). High temperature reactivity of two chromium-containing alloys in impure helium. Journal of Nuclear Materials, 375(2), 173-178.
  • Cabet, C., Terlain, A., Lett, P., Guetaz, L., & Gentzbittel, J. M. (2006). High temperature corrosion of structural materials under gas-cooled reactor helium. Materials and Corrosion, 57(2), 147-153.
  • CHIN, J., JOHNSON, W. R., & CHEN, K. (1982). Compatibility of aluminide-coated Hastelloy X and Inconel 617 in a simulated gas-cooled reactor environment. General Atomic Company.
  • Christ, H. J., Künecke, U., Meyer, K., & Sockel, H. G. (1987). High-Temperature Corrosion of the Nickel-Based Alloy Inconel-617 in Helium Containing Small Amounts of Impurities. Mater. Sci. Eng., 87, 161-168.
  • Christ, H. J., Künecke, U., Meyer, K., & Sockel, H. G. (1988). Mechanisms of High-Temperature Corrosion in Helium Containing Small Amounts of Impurities. II. Corrosion of the Nickel-Base Alloy Inconel-617. Oxid. Met., 30, 27-51.
  • Ganesan, P., Smith, G. D., & Yates, D. H. (1995). Performance of Inconel Alloy 617 in Actual and Simulated Gas Turbine Environments. Materials and manufacturing Processes, 10, 925-938.
  • Giggins, C. S., & Pettit, , F. (1971). Oxidation of Ni-Cr-Al Alloys Between 1000° and 1200°C. Journal of The Electrochemical Society, 1782.
  • HAYNES 617 alloy. (2022, 5 5). Haynes International: https://www.haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/617-brochure.pdf?sfvrsn=a27229d4_26 adresinden alındı
  • Hussain, N., Shadid, K. A., Khan, I. H., & Rahman, S. (1995). Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air. II. Oxidation of Metals, 43(3/4), 363.
  • Jang, C., Kim, D., Kim, D., Sah, I., Ryu, W., & Yoo, Y. (2011). Oxidation behaviors of wrought nickel-based superalloys in various high temperature environments. Transactions of Nonferrous Metals Society of China (English Edition), 1524-1531.
  • Jang, C., Lee, D., & Kim, D. (2008). Oxidation behaviour of an Alloy 617 in very high-temperature air and helium environments. International Journal of Pressure Vessels and Piping, 85(6), 368- 377.
  • Kewther, A., Hashmi, , M., & Yilbas, B. (2001). Corrosion properties of inconel 617 alloy after heat treatment at elevated temperature. Journal of Materials Engineering and Performance, 108-113.
  • Kim, D., Jang, C., & Ryu, W. S. (2009). Oxidation Characteristics and Oxide Layer Evolution of Alloy 617 and haynes 230 at 900 C and 1100 C. Oxit Met, 71, 271-293.
  • Kim, D.-J., Lee, G.-G., JEONG, S., KIM, W., & PARK, J. (2011). Investigation on Material Degradation of Alloy 617 in High Temperature Impure Helium Coolant. Nuclear Engineering and Technology, 429-436.
  • Martins, W. L., Hosier, J. C., & Hassford, T. H. (1974). Microstructure and phase stability of Inconel alloy 617. Metallurgical Transaction, 5, 2579.
  • Murty, K., & Charit, I. (2008). Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. Journal of Nuclear Materials, 189–195.
  • Natesan, K., Purohit, A., & Tam, S. W. (2003). Materials Behavior in HTGR Environments (NUREG/CR-6824, ANL-02/37). Washington, DC: Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commissio.
  • Sah, I., Kim, D., Lee, H., & Jang, C. (2013). Development and oxidation resistance evaluation of Al-rich surface layer on Alloy 617. Surface and Coatings Technology, 400-404.
  • Sharma, S., Ko, G., Li, F., & Kang, K. (2008). Oxidation and creep failure of alloy 617 foils at high temperature. Journal of Nuclear Materials, 144-152.
  • Sharma, S., Li, F., Ko, G., & Kang, K. (2010). Strengthening effect of Cr2O3 thermally grown on alloy 617 foils at high temperature. Journal of Nuclear Materials, 165-170.
  • Special Metals Corporation. Inconel Alloy 617. (2005). Technical Bulletin.
  • (2015). Structural Materials for Innovative Nuclear Systems. Idaho Falls: Idaho National Laboratory.
  • Tung, H.-M., & Stubbins, J. (2012). Incipient oxidation kinetics of alloy 617 and residual stress of the oxide scale formed in air at temperatures between 850 and 1000°C. Journal of Nuclear Materials, 23-28.
  • Wright, R. N. (2006). Summary of Studies of Aging and Environmental Effects on Inconel 617 and Haynes 230. Idaho Falls, Idaho: Idaho National Laboratory.
  • Yvon, P., & Carré , F. (2009). Structural materials challenges for advanced reactor systems. Journal of Nuclear Materials, 385, 217-222.