2ʺx2ʺ Sintilasyon Dedektörlerinin Puls Yüksekliği Dağılımının ve Tam Enerji Tepe Verimliliğinin Simülasyonu

Bu çalışmada, 2x2 inç NaI(Tl) ve LaBr3(Ce) dedektörlerinin foton puls yüksekliği dağılımlarının ve tam enerji tepe verimliliklerinin dedektör ve kaynak arasındaki mesafeye bağlı değişimleri araştırılmıştır. 2 cm ve 5 cm dedektör kaynak mesafeleri ve 30.973, 59.54, 80.998, 302.85, 356.01, 661.65, 1173.24, 1332.5 ve 1408.01 keV gama enerjileri için yapılan hesaplamalar radyasyon taşıma simülasyon kodlarından biri olan FLUKA ile elde edilmiştir. Simüle edilen foton puls yüksekliği dağılımlarındaki Compton sınır değerleri teorik olarak hesaplanan sonuçlarla uyumludur. Ek olarak, tam enerji tepe verimlilik değerleri literatürdeki farklı yöntemlerle karşılaştırıldığında FLUKA simülasyon sonuçlarının tatmin edici olduğu gözlenmiştir.

Simulation of Pulse Height Distribution and Full Energy Peak Efficiency of 2ʺx2ʺ Scintillation Detectors

In this study, the variation of photon pulse height distributions and full energy peak efficiencies of 2x2 inch NaI(Tl) and LaBr3(Ce) detectors depending on the distance between the detector and source were investigated. Calculations for 2 cm and 5 cm detector source distances and 30.973, 59.54, 80.998, 302.85, 356.01, 661.65, 1173.24, 1332.5 and 1408.01 keV gamma energies were obtained with FLUKA, one of the radiation transport simulation codes. The Compton edge in simulated photon pulse height distributions is compatible with the theoretically calculated results. In addition, when the full energy peak efficiency values are compared with the different methods in the literature, the FLUKA simulation results are observed are satisfactory.

___

  • Akkurt, I., Tekin, H.O., Mesbahi, A. (2015). Calculation of Detection Efficiency for the Gamma Detector using MCNPX. ACTA PHYSICA POLONICA A, Vol. 128 No. 2-B, 332-334. DOI: 10.12693/APhysPolA.128.B-332.
  • Baccouche, S., Al-Azmi, D., Karunakara, N., Trabelsi, A. (2012). Application of the Monte Carlo method for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples. Applied Radiation and Isotopes, 70, 227–232. doi:10.1016/j.apradiso.2011.07.008.
  • Böhlen, T.T., Cerutti, F., Chin, M.P.W., Fassò, A., Ferrari, A., Ortega, P.G., Mairani, A., Sala, P.R., Smirnov, G., Vlachoudis, V. (2014). The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets, 120, 211-214.
  • Casanovas, R., Morant, J.J., Salvado, M. (2012). Energy and resolution calibration of NaI(Tl) and LaBr3(Ce) scintillators and validation of an EGS5 Monte Carlo user code for efficiency calculations. Nuclear Instruments and Methods in Physics Research A, 675, 78–83. https://doi.org/10.1016/j.nima.2012.02.006
  • Ferrari, A., Sala, P.R., Fasso`, A., Ranft, J. (2005). FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC_05/11, SLAC-R-773.
  • Hajheidari, M.T., Safari, M.J., Afarideh, H., Rouhi, H. (2016). Experimental validation of response function of a NaI(Tl) detector modeled with Monte Carlo codes. Journal of Instrumentation (JINST), 1-6. doi:10.1088/1748-0221/11/06/P06011.
  • Kuluöztürk Z.N, Demir N. (2019). Investigation of the Collimator Effect on the 3ʺx3ʺ NaI(TI) Detector System by the FLUKA code. BEU Journal of Science & (Special Issue), 30-36.
  • Mouhti, I., Elaniqu, A., Messous, M.Y., Belhorma, B., Benahmed A. (2018).Validation of a NaI(Tl) and LaBr3(Ce) detector's models via measurements and Monte Carlo simulations. Journal of Radiation Research and Applied Sciences, 11, 335–339. https://doi.org/10.1016/j.jrras.2018.06.003
  • Physics Courses Lecture Notes (2014), Online Web site: on 24 June 2020, The University of Arizona: Retrieved from http://atlas.physics.arizona.edu/~shupe/Physics_Courses/Phys_586_S2015_S2016_S2017/LectureSupplements/ComptonEdge.pdf
  • Salgado, C.M., Brandão, L.E.B., Schirru, R., Pereira, C.M.N.A., Conti, C.C. (2012). Validation of a NaI(Tl) detector’s model developed with MCNP-X code. Progress in Nuclear Energy. 59, 19-25. doi:10.1016/j.pnucene.2012.03.006.
  • Tam, H.D., Yen, N.T.H., Tran, L.B., Chuong, H.D., Thanh, T.T. (2017). Optimization of the Monte Carlo simulation model of NaI(Tl) detector by Geant4 code. Applied Radiation and Isotopes, 130, 75–79. https://doi.org/10.1016/j.apradiso.2017.09.020
  • Tarim, U.A., Gurler, O. (2018). Source-to-detector Distance Dependence of Efficiency and Energy Resolution of a 3"x3" NaI(Tl) Detector. European Journal of Science and Technology No. 13, pp. 103-107. DOI: 10.31590/ejosat.443565
  • Tekin, H.O. (2016). MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data. Science and Technology of Nuclear Installations, Volume 2016, 7 pages. https://doi.org/10.1155/2016/6547318
  • Vlachoudis, V. (2009). FLAIR: A Powerful But User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York.