Ultrafine particle number concentrations and size distributions around an elevated highway viaduct

High-traffic roadways substantially contribute to UFP number concentrations and size distributions within many urban areas and may contribute to excess urban mortality and morbidity. A number of previous studies have quantified near-road concentrations of UFP and the decay with horizontal displacement from highways and indicated rapid decreases to near background levels within 300 m of the line-source. However, the majority of those previous studies have focused on ground-level highways and so herein we present data from sampling perpendicular to an elevated highway viaduct. Measurements taken during morning rush hour and non-rush hour periods using a bicycle-mounted TSI Nanoscan scanning mobility particle sizer within distances of 200–300 m from the freeway are lower than those from previous studies of ground-level highways, but the decay of UFP number concentrations with distance from the highway is more gradual. A linear mixed-effects model indicates only distance from I-81 and air temperature are significant predictors of near I-81 UFP concentrations, but wind speed and direction and vehicle counts on the street where the measurements were conducted exhibit the expected sign of dependence.

Kaynakça

Buckley, S.M., Mitchell, M.J., McHale, P.J., Millard, G.D., 2016. Variations in carbon dioxide fluxes within a city landscape: identifying a vehicular influence. Urban Ecosyst. 19, 1479–1498. http://dx.doi.org/10.1007/s11252-013-0341-0.

Cahill, T.A., Barnes, D.E., Spada, N.J., Lawton, J.A., Cahill, T.M., 2011. Very fine and ultrafine metals and ischemic heart disease in the California Central Valley 1: 2003- 2007. Aerosol. Sci. Technol. 45 (9), 1123–1134. http://dx.doi.org/10.1080/ 02786826.2011.582194.

Cahill, T.A., Barnes, D.E., Lawton, J.A., Miller, R., Spada, N., Willis, R.D., Kimbrough, S., 2016a. Transition metals in coarse, fine, very fine and ultra-fine particles from an interstate highway transect near Detroit. Atmos. Environ. 145, 158–175.

Cahill, T.A., Barnes, D.E., Wuest, L., Gribble, D., Buscho, D., Miller, R.S., De la Croix, C., 2016b. Artificial ultra-fine aerosol tracers for highway transect studies. Atmos. Environ. 136, 31–42.

Carey, V.J., 2001. Mixed-effects Models in S and S-Plus. J. Am. Stat. Assoc. 96 1135–1135.

Chalupa, D.C., Morrow, P.E., Oberdörster, G., Utell, M.J., Frampton, M.W., 2004. Ultrafine particle deposition in subjects with asthma. Environ. Health Perspect. 112, 879–882.

Charron, A., Harrison, R.M., 2003. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos. Environ. 37, 4109–4119. http://dx.doi.org/10.1016/S1352-2310(03)00510-7.

Coceal, O., Belcher, S.E., 2005. Mean winds through an inhomogeneous urban canopy. Bound. Layer Meteorol. 115, 47–68. http://dx.doi.org/10.1007/s10546-004-1591-4.

Denier van der Gon, H.A., Gerlofs-Nijland, M.E., Gehrig, R., Gustafsson, M., Janssen, N., Harrison, R.M., Hulskotte, J., Johansson, C., Jozwicka, M., Keuken, M., 2013. The policy relevance of wear emissions from road transport, now and in the future– an international workshop report and consensus statement. J. Air Waste Manag. Assoc. 63, 136–149.

Feeney, P.J., Cahill, T.A., Flocchini, R.G., Eldred, R.A., Shadoan, D.J., Dunn, T., 1975. Effect of roadbed configuration on traffic derived aerosols. J. Air Pollut. Control Assoc. 25 (11), 1145–1147. http://dx.doi.org/10.1080/00022470.1975.10470190.

Fruin, S., Westerdahl, D., Sax, T., Sioutas, C., Fine, P.M., 2008. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles. Atmos. Environ. 42, 207–219. http://dx.doi.org/10.1016/j.atmosenv.2007. 09.057.

Gibbons, J.D., Chakraborti, S., 2010. Nonparametric Statistical Inference, fifth ed. CRC Press.

Giechaskiel, B., Ntziachristos, L., Samaras, Z., Scheer, V., Casati, R., Vogt, R., 2005. Formation potential of vehicle exhaust nucleation mode particles on-road and in the laboratory. Atmos. Environ. 39, 3191–3198. http://dx.doi.org/10.1016/j.atmosenv. 2005.02.019.

Gozzi, F., Della Ventura, G., Marcelli, A., 2016. Mobile monitoring of particulate matter: state of art and perspectives. Atmos. Pollut. Res. 7, 228–234. http://dx.doi.org/10. 1016/j.apr.2015.09.007.

Hagler, G.S.W., Baldauf, R.W., Thoma, E.D., Long, T.R., Snow, R.F., Kinsey, J.S., Oudejans, L., Gullett, B.K., 2009. Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants. Atmos. Environ. 43, 1229–1234. http://dx.doi.org/10.1016/j.atmosenv.2008.11. 024.

Hagler, G.S.W., Thoma, E.D., Baldauf, R.W., 2010. High-resolution mobile monitoring of carbon monoxide and ultrafine particle concentrations in a near-road environment. J. Air Waste Manag. Assoc. 60, 328–336. http://dx.doi.org/10.3155/1047-3289.60.3. 328.

Holmes, N.S., Morawska, L., Mengersen, K., Jayaratne, E.R., 2005. Spatial distribution of submicrometer particles and CO in an urban microscale environment. Atmos. Environ. 39, 3977–3988. http://dx.doi.org/10.1016/j.atmosenv.2005.03.049.

Janhäll, S., Molnar, P., Hallquist, M., 2012. Traffic emission factors of ultrafine particles: effects from ambient air. J. Environ. Monit. 14, 2488–2496. http://dx.doi.org/10. 1039/C2EM30235G.

Jeong, C.-H., Evans, G.J., Healy, R.M., Jadidian, P., Wentzell, J., Liggio, J., Brook, J.R., 2015. Rapid physical and chemical transformation of traffic-related atmospheric particles near a highway. Atmos. Pollut. Res. 6, 662–672. http://dx.doi.org/10.5094/ APR.2015.075.

Juhn, Y.J., Qin, R., Urm, S., Katusic, S., Vargas-Chanes, D., 2010. The influence of neighborhood environment on the incidence of childhood asthma: a propensity score approach. J. Allergy Clin. Immunol. 125http://dx.doi.org/10.1016/j.jaci.2009.12. 998. 838–843.e2.

Karjalainen, P., Pirjola, L., Heikkilä, J., Lähde, T., Tzamkiozis, T., Ntziachristos, L., Keskinen, J., Rönkkö, T., 2014. Exhaust particles of modern gasoline vehicles: a laboratory and an on-road study. Atmos. Environ. 97, 262–270. http://dx.doi.org/10. 1016/j.atmosenv.2014.08.025.

Kelly, F.J., Zhu, T., 2016. Transport solutions for cleaner air. Science 352, 934–936. http://dx.doi.org/10.1126/science.aaf3420.

Kittelson, D.B., Watts, W.F., Johnson, J.P., 2004. Nanoparticle emissions on Minnesota highways. Atmos. Environ. 38, 9–19. http://dx.doi.org/10.1016/j.atmosenv.2003. 09.037.

Klems, J.P., Pennington, M.R., Zordan, C.A., Johnston, M.V., 2010. Ultrafine particles near a roadway intersection: origin and apportionment of fast changes in concentration. Environ. Sci. Technol. 44, 7903–7907. http://dx.doi.org/10.1021/ es102009e.

Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M., Oberley, T., Froines, J., Nel, A., 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111, 455–460.

Morawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos. Environ. 42, 8113–8138. http://dx.doi.org/10.1016/j.atmosenv.2008.07.050.

NYSDOT, 2015. NYS traffic data viewer. https://gis3.dot.ny.gov/html5viewer/?viewer= tdv.

Olivares, G., Johansson, C., Ström, J., Hansson, H.-C., 2007. The role of ambient temperature for particle number concentrations in a street canyon. Atmos. Environ. 41, 2145–2155. http://dx.doi.org/10.1016/j.atmosenv.2006.10.068.

Park, S.S., Kozawa, K., Fruin, S., Mara, S., Hsu, Y.-K., Jakober, C., Winer, A., Herner, J., 2011. Emission factors for high-emitting vehicles based on on-road measurements of individual vehicle exhaust with a mobile measurement platform. J. Air Waste Manag. Assoc. 61, 1046–1056. http://dx.doi.org/10.1080/10473289.2011.595981.

Pirjola, L., Paasonen, P., Pfeiffer, D., Hussein, T., Hämeri, K., Koskentalo, T., Virtanen, A., Rönkkö, T., Keskinen, J., Pakkanen, T.A., Hillamo, R.E., 2006. Dispersion of particles and trace gases nearby a city highway: mobile laboratory measurements in Finland. Atmos. Environ. 40, 867–879. http://dx.doi.org/10.1016/j.atmosenv.2005.10.018.

Reponen, T., Grinshpun, S.A., Trakumas, S., Martuzevicius, D., Wang, Z.-M., LeMasters, G., Lockey, J.E., Biswas, P., 2003. Concentration gradient patterns of aerosol particles near interstate highways in the Greater Cincinnati airshed. J. Environ. Monit. 5, 557–562. http://dx.doi.org/10.1039/B303557C.

Ruths, M., von Bismarck-Osten, C., Weber, S., 2014. Measuring and modelling the localscale spatio-temporal variation of urban particle number size distributions and black carbon. Atmos. Environ. 96, 37–49. http://dx.doi.org/10.1016/j.atmosenv.2014.07. 020.

Stolzel, M., Breitner, S., Cyrys, J., Pitz, M., Wolke, G., Kreyling, W., Heinrich, J., Wichmann, H.-E., Peters, A., 2007. Daily mortality and particulate matter in different size classes in Erfurt, Germany. J. Expo. Sci. Environ. Epidemiol. 17 458–458.

Tong, Z., Wang, Y.J., Patel, M., Kinney, P., Chrillrud, S., Zhang, K.M., 2012. Modeling spatial variations of black carbon particles in an urban highway-building environment. Environ. Sci. Technol. 46, 312–319. http://dx.doi.org/10.1021/es201938v.

Tritscher, T., Beeston, M., Zerrath, A.F., Elzey, S., Krinke, T.J., Filimundi, E., Bischof, O.F., 2013. NanoScan SMPS – a novel, portable nanoparticle sizing and counting instrument. J. Phys. Conf. Ser. 429, 012061. http://dx.doi.org/10.1088/1742-6596/429/ 1/012061.

U.S. Department of Energy, Energy Information Administration, 2015. Annual Energy Outlook 2015.

Vogt, R., Scheer, V., Casati, R., Benter, T., 2003. On-road measurement of particle emission in the exhaust plume of a diesel passenger car. Environ. Sci. Technol. 37, 4070–4076. http://dx.doi.org/10.1021/es0300315.

Wang, Y.J., Zhang, K.M., 2009. Modeling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT. Environ. Sci. Technol. 43, 7778–7783. http:// dx.doi.org/10.1021/es9014844.

Wehner, B., Uhrner, U., von Löwis, S., Zallinger, M., Wiedensohler, A., 2009. Aerosol number size distributions within the exhaust plume of a diesel and a gasoline passenger car under on-road conditions and determination of emission factors. Atmos. Environ. 43, 1235–1245. http://dx.doi.org/10.1016/j.atmosenv.2008.11.023.

Westerdahl, D., Fruin, S., Sax, T., Fine, P.M., Sioutas, C., 2005. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos. Environ. 39, 3597–3610. http://dx.doi. org/10.1016/j.atmosenv.2005.02.034.

Wigginton, N.S., Fahrenkamp-Uppenbrink, J., Wible, B., Malakoff, D., 2016. Cities are the future. Science 352, 904–905. http://dx.doi.org/10.1126/science.352.6288.904.

Zhu, Y., Hinds, W.C., Kim, S., Shen, S., Sioutas, C., 2002a. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos. Environ. 36, 4323–4335. http://dx.doi.org/10.1016/S1352-2310(02)00354-0.

Zhu, Y., Hinds, W.C., Kim, S., Sioutas, C., 2002b. Concentration and size distribution of ultrafine particles near a major highway. J. Air Waste Manag. Assoc. 52, 1032–1042. http://dx.doi.org/10.1080/10473289.2002.10470842.

Zhu, Y., Pudota, J., Collins, D., Allen, D., Clements, A., DenBleyker, A., Fraser, M., Jia, Y., McDonald-Buller, E., Michel, E., 2009. Air pollutant concentrations near three Texas roadways, Part I: ultrafine particles. Atmos. Environ. 43, 4513–4522. http://dx.doi. org/10.1016/j.atmosenv.2009.04.018.

Kaynak Göster