Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment

The Environmental Protection Agency (USEPA) has identified Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) as hazardous air pollutants. In this study, BTEX sampling was conducted at 20 sites during summer 2015 and winter 2016 in Yazd. Concentrations of BTEX were analyzed using a gas chromatograph with a flame ionization detector (GC-FID). In addition, ozone formation potential (OFP) and the health risks of BTEX were calculated. Spatial mapping was accomplished using the Kriging method. The obtained concentrations of total BTEX ranged from 8 to 560 mg/m3 . The highest average individual values belonged to toluene and xylene (38 ± 42 and 41 ± 45 mg/m3 , respectively). Seasonal variation showed a downward trend from summer to winter. The peak BTEX emissions occurred in the evenings, due to rush hour traffic and meteorological factors. Spatial analysis showed that the maximum levels of BTEX occurred on high traffic roads or near fuel stations. Significant correlation coefficients between benzene and other BTEX compounds revealed that BTEX were emitted from main sources including gasoline vehicles and stations. The mean ratio of toluene/benzene (T/B) in summer (1.8) was more than winter (1.4). The seasonal changes in T/B ratio possibly were attributed to photochemistry, meteorology, and emission aspects. The OFP values were 720 ± 729 and 375 ± 319 mg/m3 in summer and winter, respectively. OFPs, ranked maximum to minimum, were as follows: xylene > toluene > ethylbenzene > benzene. Although the values of the non-cancer risk of BTEX were under permissible recommended level, a cancer risk still exists because of high values of airborne benzene.

Kaynakça

Alghamdi, M., Khoder, M., Abdelmaksoud, A., Harrison, R., Hussein, T., Lihavainen, H., Al-Jeelani, H., Goknil, M., Shabbaj, I., Almehmadi, F., 2014. Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual. Atmos. Health 7, 467e480.

Atkinson, R., 2000. Atmospheric chemistry of VOCs and NO x. Atmos. Environ. 34, 2063e2101.

Baldasano, J.M., Delgado, R., Calbo, J., 1998. Applying receptor models to analyze urban/suburban VOCs air quality in Martorell (Spain). Environ. Sci. Technol. 32, 405e412.

Baltrenas, P., Baltr _ enait _ e, E., _Sereviciene, V., Pereira, P., 2011. Atmospheric BTEX _ concentrations in the vicinity of the crude oil refinery of the Baltic region. Environ. Monit. Assess. 182, 115e127.

Batterman, S.A., Peng, C.-Y., Braun, J., 2002. Levels and composition of volatile organic compounds on commuting routes in Detroit, Michigan. Atmos. Environ. 36, 6015e6030.

Bauri, N., Bauri, P., Kumar, K., Jain, V., 2016. Evaluation of seasonal variations in abundance of BTXE hydrocarbons and their ozone forming potential in ambient urban atmosphere of Dehradun (India). Air Qual. Atmos. Health 9, 95e106.

Berman, J.D., Breysse, P.N., White, R.H., Waugh, D.W., Curriero, F.C., 2015. Evaluating methods for spatial mapping: applications for estimating ozone concentrations across the contiguous United States. Environ. Technol. Innovat. 3, 1e10.

Carter, W., 2010. Updated Maximum Incremental Reactivity Scale And Hydrocarbon Bin Reactivities for Regulatory Applications. College of Engineering Center for Environmental Research and Technology University of California, Riverside, CA 92521. Revised January 28, 2010. http://www.engr.ucr.edu/~carter/SAPRC/ (Online).

Carter, W.P., 1990. A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. part A. general Top. 24, 481e518. Carter, W.P., 1994. Development of ozone reactivity scales for volatile organic compounds. Air & waste 44, 881e899.

Chattopadhyay, G., Samanta, G., Chatterjee, S., Chakraborti, D., 1997. Determination of benzene, toluene and xylene in ambient air of Calcutta for three years during winter. Environ. Technol. 18, 211e218.

da Silva, D.B.N., Martins, E.M., Correa, S.M., 2016. Role of carbonyls and aromatics in the formation of tropospheric ozone in Rio de Janeiro, Brazil. Environ. Monit. Assess. 188, 1e13.

Derwent, R., Davies, T., Delaney, M., Dollard, G., Field, R., Dumitrean, P., Nason, P., Jones, B., Pepler, S., 2000. Analysis and interpretation of the continuous hourly monitoring data for 26 C 2eC 8 hydrocarbons at 12 United Kingdom sites during 1996. Atmos. Environ. 34, 297e312.

Derwent, R., Jenkin, M., Saunders, S., 1996. Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos. Environ. 30, 181e199.

Esmaelnejad, F., Hajizadeh, Y., Pourzamani, H., Amin, M.M., 2015. Monitoring of benzene, toluene, ethyl benzene, and xylene isomers emission from Shahreza gas stations in 2013. Int. J. Environ. Health Eng. 4, 17.

Fanizza, C., Manigrasso, M., Incoronato, F., Schiro, R., Avino, P., 2011. Temporal trend and ozone formation potential of aromatic hydrocarbons in urban air of Rome. Proc. 3rd Int. CEMEPE SECOTOX Conf. 19e24.

Fard, R.F., Naddafi, K., Yunesian, M., Nodehi, R.N., Dehghani, M.H., Hassanvand, M.S., 2016. The assessment of health impacts and external costs of natural gas-fired power plant of Qom. Environ. Sci. Pollut. Res. 23, 20922e20936.

Fazlzadeh, D.M., Rostami, R., Zarei, A., Feizizadeh, M., Mahdavi, M., Mohammadi, A., Eskandari, D., 2012. A survey of 24 hour variations of BTEX concentration in the ambient air of Tehran. J. Babol Uni Med. Sci. 14.

Frank De Leeuw, P.R.E.A.T.P., 2017. Evaluation of current limit and target values as set in the EU Air Quality Directive. https://www.eionet.europa.eu/events/ EIONET/ETC_ACM_Report.

Galvao, E.S., Santos, J.M., Junior, N.C.R., Stuetz, R.M., 2016. Volatile organic com- ~ pounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil. Environ. Technol. 1e16.

Grosjean, E., Rasmussen, R.A., Grosjean, D., 1998. Ambient levels of gas phase pollutants in Porto Alegre, Brazil. Atmos. Environ. 32, 3371e3379.

Hansen, A.B., Palmgren, F., 1996. VOC air pollutants in Copenhagen. Sci. Total Environ. 189, 451e457.

Hoque, R.R., Khillare, P., Agarwal, T., Shridhar, V., Balachandran, S., 2008. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci. Total Environ. 392, 30e40.

Hung-lung, C., Jiun-horng, T., Shih-yu, C., Kuo-Hsiung, L., Sen-yi, M., 2007. VOC concentration profiles in an ozone non-attainment area: a case study in an urban and industrial complex metroplex in southern Taiwan. Atmos. Environ. 41, 1848e1860.

Johnson, M.M., Williams, R., Fan, Z., Lin, L., Hudgens, E., Gallagher, J., Vette, A., Neas, L., Ozkaynak, H., 2010. Participant-based monitoring of indoor and out- door nitrogen dioxide, volatile organic compounds, and polycyclic aromatic hydrocarbons among MICA-Air households. Atmos. Environ. 44, 4927e4936.

Kerbachi, R., Boughedaoui, M., Bounoua, L., Keddam, M., 2006. Ambient air pollution by aromatic hydrocarbons in Algiers. Atmos. Environ. 40, 3995e4003.

Khoder, M.I., 2007. Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos. Environ. 41, 554e566.

Lan, T.T.N., Binh, N.T.T., 2012. Daily roadside BTEX concentrations in east asia measured by the lanwatsu, Radiello and Ultra I SKS passive samplers. Sci. Total Environ. 441, 248e257.

Lee, S., Chiu, M., Ho, K., Zou, S., Wang, X., 2002. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48, 375e382.

Li, L., Li, H., Zhang, X., Wang, L., Xu, L., Wang, X., Yu, Y., Zhang, Y., Cao, G., 2014. Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing, China. J. Environ. Sci. 26, 214e223.

Liu, K., Zhang, C., Cheng, Y., Liu, C., Zhang, H., Zhang, G., Sun, X., Mu, Y., 2015. Serious BTEX pollution in rural area of the North China Plain during winter season. J. Environ. Sci. 30, 186e190.

Mahmoudi, M., Kolbadi Nezhad, M., Pourmousa, M., 2014. Climatic guides for designing open spaces in residential complexes of Yazd. Iran Univ. Sci. Technol. 24, 24e36.

Majumdar, D., Mukherjeea, A., Sen, S., 2011. BTEX in ambient air of a Metropolitan City. J. Environ. Prot. 2, 11.

Marc, M., Bielawska, M., Simeonov, V., Namiesnik, J., Zabiegała, B., 2016. The effect of anthropogenic activity on BTEX, NO 2, SO 2, and CO concentrations in urban air of the spa city of Sopot and medium-industrialized city of Tczew located in North Poland. Environ. Res. 147, 513e524.

Martin, N.A., Leming, E.J., Henderson, M.H., Lipscombe, R.P., Black, J.K., Jarvis, S.D., 2010. Verification of diffusive and pumped samplers for volatile organic compounds using a controlled atmosphere test facility. Atmos. Environ. 44, 3378e3385.

Mehrjardi, R.T., Jahromi, M.Z., Mahmodi, S., Heidari, A., 2008. Spatial distribution of groundwater quality with geostatistics (case study: Yazd-Ardakan Plain). World Appl. Sci. J. 4, 9e17.

Miller, L., Xu, X., Grgicak-mannion, A., Brook, J., Wheeler, A., 2012. Multi-season, multi-year concentrations and correlations amongst the BTEX group of VOCs in an urbanized industrial city. Atmos. Environ. 61, 305e315.

Miri, M., Aval, H.E., Ehrampoush, M.H., Mohammadi, A., Toolabi, A., Nikonahad, A., Derakhshan, Z., Abdollahnejad, A., 2017. Human health impact assessment of exposure to particulate matter: an AirQ software modeling. Environ. Sci. Pollut. Res. 1e7.

Miri, M., Jamshidi, S., Derakhshan, Z., Gholizadeh, A., Karimi, H., Amanalikhani, S., Hashemi, S.Y., 2016a. Spatial analysis and source identification of particulate matter (PM10) in Yazd city. J. Community Health Res. 5, 45e56.

Miri, M., Shendi, M.R.A., Ghaffari, H.R., Aval, H.E., Ahmadi, E., Taban, E., Gholizadeh, A., Aval, M.Y., Mohammadi, A., Azari, A., 2016b. Investigation of outdoor BTEX: concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 163, 601e609.

Mohammadi, A., Miri, M., Ebrahimi, A., Khorsandi, H., Nemati, S., 2016. Monitoring of THMs concentration in Isfahan water distribution system and zoning by GIS, a case study in the center of Iran. Iran. J. Health, Saf. Environ. 3, 421e427.

Mokhtari, M., Miri, M., Mohammadi, A., Khorsandi, H., Hajizadeh, Y., Abdolahnejad, A., 2015. Assessment of air quality index and health impact of PM10, PM2.5 and SO2 in Yazd, Iran. J. Mazandaran Univ. Med. Sci. 25, 14e23.

Mosaddegh Mehrjerdi, M.H., Tahmasebi, N., Barkhordari Firoozabadi, A., Fallahzadeh, H., Esmaielian, S., Soltanizadeh, K., 2014. The investigation of exposure to benzene, toluene, ethylbenzene and xylene (BTEX) with Solid Phase Microextr action Method in gas station in Yazd province. ISMJ 16, 419e427.

Mullaugh, K.M., Hamilton, J.M., Avery, G.B., Felix, J.D., Mead, R.N., Willey, J.D., Kieber, R.J., 2015. Temporal and spatial variability of trace volatile organic compounds in rainwater. Chemosphere 134, 203e209.

Na, K., Moon, K.-C., Kim, Y.P., 2005. Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmos. Environ. 39, 5517e5524.

Nejadkoorki, F., Yousefi, E., Naseri, F., 2010. Analysing street traffic noise pollution in the city of Yazd. J. Environ. Health Sci. Eng. 7, 53e62.

Nikoonahad, A., Naserifar, R., Alipour, V., Poursafar, A., Miri, M., Ghafari, H.R., Abdolahnejad, A., Nemati, S., Mohammadi, A., 2017. Assessment of hospitalization and mortality from exposure to PM10 using AirQ modeling in Ilam, Iran. Environ. Sci. Pollut. Res. 1e6.

Niosh, 2016. NIOSH Test Method 1015. http://www.caslab.com/Test-Method-1015/ (Online).

Organization, W.H., 2006. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide. World Health Organization.

Pankow, J.F., Luo, W., ender, D.A., Isabelle, L.M., Hollingsworth, J.S., Chen, C., Asher, W.E., Zogorski, J.S., 2003. Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States. Atmos. Environ. 37, 5023e5046.

Parra, M., Elustondo, D., Bermejo, R., Santamaria, J., 2009. Ambient air levels of volatile organic compounds (VOC) and nitrogen dioxide (NO 2) in a medium size city in Northern Spain. Sci. Total Environ. 407, 999e1009.

Parra, M.A., Gonzalez, L., Elustondo, D., Garrig o, J., Bermejo, R., Santamaría, J.M., 2006. Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain. Sci. Total Environ. 370, 157e167.

Pekey, B., Yilmaz, H., 2011. The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey. Microchem. J. 97, 213e219.

Perez-Rial, D., Lopez-Mahía, P., Muniategui-lorenzo, S., Prada-Rodríguez, D., 2009. Temporal distribution, behaviour and reactivities of BTEX compounds in a suburban Atlantic area during a year. J. Environ. Monit. 11, 1216e1225.

Presto, A.A., Dallmann, T.R., Gu, P., Rao, U., 2016. BTEX exposures in an area impacted by industrial and mobile sources: source attribution and impact of averaging time. J. Air & Waste Manag. Assoc. 66, 387e401.

Rad, H.D., Babaei, A.A., Goudarzi, G., Angali, K.A., Ramezani, Z., Mohammadi, M.M., 2014. Levels and sources of BTEX in ambient air of Ahvaz metropolitan city. Air Qual. Atmos. Health 7, 515e524.

Schneider, P., Gebefugi, I., Richter, K., Wolke, G., Schnelle, J., Wichmann, H.-E., € Heinrich, J., The inga-study, I.S.G.F., 2001. Indoor and outdoor BTX levels in German cities. Sci. Total Environ. 267, 41e51.

Su, J.G., Jerrett, M., Beckerman, B., Verma, D., Arain, M.A., Kanaroglou, P., Stieb, D., Finkelstein, M., Brook, J., 2010. A land use regression model for predicting ambient volatile organic compound concentrations in Toronto, Canada. Atmos. Environ. 44, 3529e3537.

Thorsson, S., Eliasson, I., 2006. Passive and active sampling of benzene in different urban environments in Gothenburg, Sweden. Water, Air, Soil Pollut. 173, 39e56.

Tsai, W., Chan, L., Blake, D., Chu, K.-W., 2006. Vehicular fuel composition and atmospheric emissions in South China: Hong Kong, Macau, Guangzhou, and Zhuhai. Atmos. Chem. Phys. 6, 3281e3288.

Tunsaringkarn, T., Prueksasit, T., Morknoy, D., Semathong, S., Rungsiyothin, A., Zapaung, K., 2014. Ambient air's volatile organic compounds and potential ozone formation in the urban area, Bangkok. Thail. J. Environ. Occup. Sci. Jul-Sep 3, 131.

USEPA, 1992. Guidelines for exposure assessment. Fed. Regist. 57, 22888e22938.

USEPA, 2017. Health and environmental effects of ozone layer depletion, 2011. Available from: http://www.epa.gov/ozone/science/effects/ (Online).

Wang, F., Costabile, F., Liu, F., Hong, W., Fang, D., Allegrini, I., 2010. Ambient BTX measurements in suzhou, China. Environ. Monit. Assess. 168, 21e31.

Wang, G., Cheng, S., Wei, W., Zhou, Y., Yao, S., Zhang, H., 2016. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China. Atmos. Pollut. Res. 7, 711e724.

Watson, S.D., Pletschke, B.I., 2006. The effect of sulfide on a-glucosidases: Implications for starch degradation in anaerobic bioreactors. Chemosphere 65, 159e164.

Xu, C.-Y., Gong, L., Jiang, T., Chen, D., Singh, V., 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrology 327, 81e93.

Yurdakul, S., Civan, M., Ozden, € O., Gaga, E., D € o€gero glu, T., Tuncel, G., 2017. Spatial variation of VOCs and inorganic pollutants in a university building. Atmos. Pollut. Res. 8, 1e12.

Kaynak Göster

1265 513

Arşiv
Sayıdaki Diğer Makaleler

Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment

Yaghoub HAJİZADEH, Mehdi MOKHTARİ, Maryam FARAJİ, Amir MOHAMMADİ, Sepideh NEMATİ, Reza GHANBARİ, Ali ABDOLAHNEJAD, Reza Fouladi FARD, Ali NİKOONAHAD, Negar JAFARİ, Mohammad MİRİ

Combined membrane photocatalytic ozonation and wet absorption of elemental mercury

Z.S. HUANG, Z.S. WEİ, Y.M. HE, J.L. PEİ, X.L. XİAO, M.R. TANG, S. YU

Modelling study of the atmospheric composition over Cyprus

Jonilda KUSHTA, Georgios K. GEORGİOU, Yiannis PROESTOS, Theodoros CHRİSTOUDİAS, Jos LELİEVELD

The relation between columnar and surface aerosol optical properties in a background environment

D. SZCZEPANİK, K.M. Markowicz

Low-cost methodology to estimate vehicle emission factors

J. MADRAZO, A. CLAPPİER

Greenhouse gas emission accounting at urban level: A case study of the city of Wroclaw (Poland)

Izabela SÓWKA, Yaroslav BEZYK

Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China

Nan Jiang, Shasha Yin, Yue GUO, Jingyi Lİ, Panru KANG, Ruiqin Zhang, Xiaoyan TANG

A minimum set of ozone precursor volatile organic compounds in an urban environment

Cleyton M. da SİLVA, Luane L. da SİLVA, Sergio M. CORRÊA, Graciela ARBİLLA

A review on nanoparticle dispersion from vehicular exhaust: Assessment of Indian urban environment

Tandra BANERJEE, R.A. CHRİSTİAN

Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka

Chi Sing CHAN, Ranasinghege Sampath Aravinda RANASINGHE, Steven Sai Hang HO, Kin Fai HO, Steve Hung Lam YIM, A.G.T. SUGATHAPALA, Shun Cheng LEE, Wing Tat HUNG, Tien YU HUANG, Hong Qi ZHANG