The relation between columnar and surface aerosol optical properties in a background environment

This work presents the results of observation and the numerical simulation relationship between columnar and surface aerosol optical properties. The presented data include sun photometer nephelometer, aethalometer, and ceilometer observation, as well as the Navy Aerosol Analysis and Prediction System (NAAPS) re-analysis obtained between 2013 and 2016. Measurements were made in Strzyzow station (south-eastern part of Poland), which belongs to the AERONET and Poland-AOD network. Observation and simulation data show that the correlation coefficient between aerosol optical depth and surface aerosol scattering coefficient depends on the averaging period. For the monthly mean both parameters are negatively correlated as a result of the seasonal variability of anthropogenic emission in Central Europe and long-range transport of natural aerosol, as well as the change of the meteorological conditions. Reduction of the averaging time leads to an increase in the correlation coefficient, which is almost zero for a 10-day period and 0.4 ± 0.05 when the six-hour data are selected. In addition, the correlation between columnar and surface aerosol optical properties shows significant variation with surface temperature gradient. During convective conditions the correlation coefficient between aerosol optical depth and aerosol scattering coefficient is as much as 0.89 ± 0.03 while during inversion it is approximately 0.48 ± 0.08.


Al-Saadi, J., Szykman, J., Pierce, R.B., Kittaka, C., Neil, D., Chu, D.A., Remer, L., Gumley, L., Prins, E., Weinstock, L., MacDonald, C., Wayland, R., Dimmick, F., Fishman, J., 2005. Improving national air quality forecasts with satellite aerosol observations. Bull. Am. Meteorol. Soc. 86 (9), 1249–1261.

Anderson, T.L., Covert, D.S., Marshall, S.F., Laucks, M.L., Charlson, R.J., Waggoner, A.P., Ogren, J.A., Caldow, R., Holm, R.L., Quant, F.R., Sem, G.J., Wiedensohler, A., Ahlquist, N.A., Bates, T.S., 1996. Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. J. Atmos. Ocean. Technol. 13 (5), 967–986.

Anderson, J.O., Thundiyil, J.G., Stolbach, A., 2012. Clearing the air: a review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8 (2), 166–175.

Andrews, E., Ogren, J.A., Kinne, S., Samset, B., 2017. Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements. Atmos. Chem. Phys. 17, 6041–6072.

Arnott, W.P., Hamasha, K., Moosmuller, H., Sheridan, P.J., Ogren, J.A., 2005. Towards aerosol light-absorption measurements with a a 7-wavelength aethalometer: evaluation with a photoacustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 39, 17–29.

Aryal, R.P., Voss, K.J., Terman, P.A., Keene, W.C., Moody, J.L., Welton, E.J., Holben, B.N., 2014. Comparison of surface and column measurements of aerosol scattering properties over Western North Atlantic Ocean at Bermuda. Atmos. Chem. Phys. 14, 7617–7629.

Aurora 4000 polar nephelometer manual, uploads/2015/02/Aurora-4000-User-Manual.pdf, access, May 2017.

Bennouna, Y.S., Cachorro, V.E., Mateos, D., Burgos, M.A., Toledano, C., Torres, B., de Frutos, A.M., 2016. Long-term comparative study of columnar and surface mass concentration aerosol properties in a background environment. Atmos. Environ. 140, 261–272.

Chilinski, M.T., Markowicz, K.M., Markowicz, J., 2016a. Observation of vertical variability of black carbon concentration in lower troposphere on campaigns in Poland. Atmos. Environ. 137, 155–170.

Chilinski, M.T., Markowicz, K.M., Zawadzka, O., Stachlewska, I.S., Kumala, W., Petelski, T., Makuch, P., Westphal, D.L., Zagajewski, B., 2016b. Modelling and observation of mineral dust optical properties over Central Europe. Acta Geophys. 64 (6), 2550–2590.

Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J.S., Jennings, S.G., Moerman, M., Petzold, A., Schmid, O., Baltensperger, U., 2010. Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmos. Meas. Tech. 3, 457–474.

Dubovik, O., King, M.D., 2000. A exible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J . Geophys. Res. 105 (D16), 20673–20696.

Dubovik, O., Holben, B., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanré, D., Slutsker, I., 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590–608.

Engel-Cox, J.A., Hoff, R.M., Rogers, R., Dimmick, F., Rush, A.C., Szykman, J.J., Al-Saadi, J., Chu, D.A., Zell, E.R., 2006. Integrating LIDAR and satellite optical depth with ambient monitoring for 3-D dimensional particulate characterisation. Atmos. Environ. 40, 8056–8067.

Eresmaa, N., Karppinen, A., Joffre, S.M., Rasanen, J., Talvitie, H., 2006. Mixing height determination by ceilometer. Atmos. Chem. Phys. 6, 1485e1493.

Filip, L., Stefan, S., 2011. Study of the correlation between the near-ground PM10 mass concentration and the aerosol optical depth. J. Atmos. Solar-Terrestrial Phys. 73, 1883–1889.

Ford, B., Heald, C.L., 2013. Aerosol loading in the Southeastern United States: reconciling surface and satellite observations. Atmos. Chem. Phys. 13, 9269–9283. http://dx.doi. org/10.5194/acp-13-9269-2013.

Grgurić, S., Križan, J., Gašparac, G., Antonić, O., Špirić, Z., Mamouri, R.E., Christodoulou, A., Nisantzi, A., Agapiou, A., Themistocleous, K., Fedra, K., Panayiotou, C., Hadjimitsis, D., 2014. Relationship between MODIS based aerosol optical depth and PM10 over Croatia. Central Eur. J. Geosci. 6 (1), 2–16.

Gupta, P., Christopher, S.A., 2009. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach. J. Geophys Res. Atmos. (1984–2012) 114, 1–13.

Hänel, G., 1976. The properties of atmospheric aerosol particles as functions of relative humidity at thermodynamic equilibrium with surrounding moist air. Adv. Geophys. 19, 73–188.

Heese, B., Flentje, H., Althausen, D., Ansmann, A., Frey, S., 2010. Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Tech. 3, 1763e1770.

Hogan, T., Rosmond, T., 1991. The description of the navy operational global atmospheric prediction System's spectral forecast model. Mon. Wea. Rev. 119, 1786–1815.

Holben, B.N., Eck, T.F., Slutsker, I., Tenre, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998. AERONET-a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1–16. 00031-5.

Hutchison, K.D., 2003. Applications of MODIS satellite data and products for monitoring air quality in the state of Texas. Atmos. Environ. 37, 2403–2412.

IPCC, 2013. Summary for policymakers. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge United Kingdom and New York, NY, USA, pp. 1–30.

Kaufman, Y.J., Gobbi, G.P., Koren, I., 2006. Aerosol climatology using a tunable spectral variability cloud screening of AERONET data. J. Geophys. Res. 33, L07817. http://dx.

Koelemeijer, R.B.A., Homan, C.D., Matthijsen, J., 2006. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos. Environ. 40, 5304–5315.

Kokhanovsky, A.A., Deuzé, J.L., Diner, D.J., Dubovik, O., Ducos, F., Emde, C., Garay, M.J., Grainger, R.G., Heckel, A., Herman, M., Katsev, I.L., Keller, J., Levy, R., North, P.R.J., Prikhach, A.S., Rozanov, V.V., Sayer, A.M., Ota, Y., Tanré, D., Thomas, G.E., Zege, E.P., 2010. The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos. Meas. Tech. 3, 909–932.

Kong, L., Xin, J., Zhang, W., Wang, Y., 2016. The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS. Environ. Pollut. 216, 350–360. envpol.2016.05.085.

Kumar, N., Chu, A., Foster, A., 2007. An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos. Environ. 41, 4492–4503.

Krewski, D., Burnett, R.T., Goldberg, M.S., Hoover, K., Siemiatycki, J., Jerrett, M., Abrahamowicz, A., White, W.H., 2000. Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality: a Special Report of the Institute's Particle Epidemiology Reanalysis Project. Health Effects Institute, Cambridge MA p. 97.

Li, Z., Zhao, X., Kahn, R., Mishchenko, M., Remer, L., Lee, K.-H., Wang, M., Laszlo, I., Nakajima, T., Maring, H., 2009. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann. Geophys. 27, 2755–2770.

Liu, Y., Koutrakis, P., Kahn, R., Turquety, S., Yantosca, R.M., 2007. Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: Part 2 – a case study. J. Air Waste Manag. Assoc. 57 (11), 1360–1369.

Liu, S., Aiken, A.C., Arata, C., Dubey, M.K., Stockwell, C.E., Yokelson, R.J., Stone, E.A., Jayarathne, T., Robinson, A., DeMott, P.J., Kreidenweis, S.M., 2014. Aerosol single scattering albedo dependence on biomass combustion efficiency: laboratory and field studies. Geophys. Res. Lett. 41, 742–748.

Lynch, P., Reid, J.S., Westphal, D.L., Zhang, J., Hogan, T.F., Hyer, E.J., Curtis, C.A., Hegg, D.A., Shi, Y., Campbell, J.R., Rubin, J.I., Sessions, W.R., Turk, F.J., Walker, A.L., 2016. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences. Geosci. Model Dev. 9, 1489–1522.

Maciszewska, A.E., Markowicz, K.M., Witek, M.L., 2010. A multiyear analysis of aerosol optical thickness over Europe and Central Poland using NAAPS model simulation. Acta Geophys. 58 (6), 1147–1163.

Markowicz, K.M., Flatau, P.J., Kardas, A.E., Stelmaszczyk, K., Woeste, L., 2008. Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. J. Atmos. Ocean. Technol 25, 928e944.

Markowicz, K.M., et al., 2012. Study of vertical structure of aerosol optical properties with sun photometers and ceilometer during the MACRON campaign in 2007. Acta Geophys. 60, 1308e1337.

Markowicz, K.M., Chilinski, M.T., Lisok, J., Zawadzka, O., Stachlewska, I.S., Janicka, L., Rozwadowska, A., Makuch, P., Pakszys, P., Zielinski, T., Petelski, T., Posyniak, M., Pietruczuk, A., Szkop, A., Westphal, D.L., 2016. Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe in July 2013. J. Aerosol Sci. 101, 156–173.

Martucci, G., Milroy, C., O'Dowd, C.D., 2010. Detection of cloud-base height rusing jenoptik CHM15K and Vaisala CL31 ceilometers. J. Atmos. Ocean. Technol. 27, 305e318.

McMeeking, G.R., Kreidenweis, S.M., Baker, S., Carrico, C.M., Chow, J.C., Collet Jr., J.L., Hao, W.M., Holden, A.S., Kirch-stetter, T.W., Malm, W.C., Moosmuller, H., Sullivan, A.P., Wold, C.E., 2009. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. 114, D19210.

Mukai, S., Sano, I., Mukai, M., Yasumoto, M., 2008. Evaluation of air quality from space. Proc. SPIE – Int. Soc. Opt. Eng. 6745 67451X.1–67451X.8.

Natunen, A., Arola, A., Mielonen, T., Huttunen, J., Komppula, M., Lehtinen, K.E.J., 2010. A multi-year comparison of PM2.5 and AOD for the Helsinki region. Boreal Environ. Res. 15 (6), 544–552.

Porter, J.N., Lienert, B., Sharma, S.K., 2000. Using the horizontal and slant lidar calibration methods to obtain aerosol scattering coefficients from a coastal lidar in Hawaii. J. Atmos. Ocean. Technol. 17, 1445–1454.

Ran, L., Deng, Z.Z., Wang, P.C., Xia, X.A., 2016. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements. Atmos. Environ. 142, 132–144.

Schafer, J.S., Eck, T.F., Holben, B.N., Thornhill, K.L., Anderson, B.E., Sinyuk, A., Giles, D.M., Winstead, E.L., Ziemba, L.D., Beyersdorf, A.J., Kenny, P.R., Smirnov, A., Slutsker, I., 2014. Intercomparison of aerosol single-scattering albedo derived from AERONET surface radiometers and LARGE in situ aircraft profiles during the 2011 DRAGON-MD and DISCOVER-AQ experiments. J. Geophys. Res. Atmos.

Schaap, M., Apituley, A., Timmermans, R.M.A., Koelemeijer, R.B.A., de Leeuw, G., 2009. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, The Netherlands. Atmos. Chem. Phys. 9, 909–925. 2009.

Schwartz, S.E., Arnold, F., Blanchet, J.P., Durkeem, P.A., Hofmannm, D.J., Hoppel, W.A., King, M.D., Lacis, A.A., Nakajima, T., Ogren, J.A., Toon, O.B., Group Report, 1995. Connections between aerosol properties and forcing of climate. In: Charlson, R.J., Heintzenberg, J. (Eds.), Aerosol Forcing of Climate. John Wiley and Sons, pp. 251.

Seo, S., Kim, J., Lee, H., Jeong, U., Kim, W., Holben, B.N., Kim, S.-W., Song, C.H., Lim, J.H., 2015. Estimation of PM10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign. Atmos. Chem. Phys. 15, 319–334. 2015.

Song, C.-K., Ho, C.-H., Park, R., Choi, Y.-S., Kim, J., Gong, D., Lee, Y.-B., 2009. Spatial and seasonal variations of surface PM10 concentration and MODIS aerosol optical depth over China. Asia-Pac. J. Atmos. Sci. 45 (1), 33–43.

Stachlewska, I.S., Piadłowski, M., Migacz, S., Szkop, A., Zielinska, A.J., Swaczyna, P.L., 2012. Ceilometer observations of the boundary layer over Warsaw, Poland. Acta Geophys. 60, 1386–1412.

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. Soc. 96, 2059–2077.

Toth, T.D., Zhang, J., Campbell, J.R., Hyer, E.J., Reid, J.S., Shi, Y., Westphal, D.L., 2013. Impact of data quality and surface-to-column representativeness on the PM2.5/satellite AOD relationship for the Continental United States. Atmos. Chem. Phys. Discuss. 13, 31635–31671.

Vaisala, cited, 2010. Vaisala weather transmitter WXT520. Available online at. http://].

Wang, J., Christopher, S.A., 2003. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geo Res. Lett. 2003 (30), 2095.

Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34, 1445–1463.

Yahi, H., Marticorena, B., Thiria, S., Chatenet, B., Schmechtig, C., Rajot, J.L., Crepon, M., 2013. Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology. J. Geophys. Res. 118, 13,265–13,281. 2013JD019465.

Yap, X.Q., Hashim, M., 2013. A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmos. Chem. Phys. 13, 3517–3526. 10.5194/acp-13-3517-2013.

Zawadzka, O., Markowicz, K.M., Pietruczuk, A., Zielinski, T., Jaroslawski, J., 2013. Impact of urban pollution emitted in Warsaw on aerosol properties. Atmos. Environ. 69, 15–28.

Zeeshan, M., Oanh, N.T. Kim, 2014. Assessment of the relationship between satellite AOD and ground PM10 measurement data considering synoptic meteorological patterns and Lidar data. Sci. Total Environ. 473–474, 609–618.

Zhang, J., Campbell, J.R., Hyer, E.J., Reid, J.S., Westphal, D.L., Johnson, R.S., 2014. Evaluating the impact of multisensor data assimilation on a global aerosol particle transport model. J. Geophys. Res. Atmos. 119, 4674–4689. 1002/2013JD020975.

Zhang, L., Cao, X., Bao, J., Zhou, B., Huang, J., Shi, J., Bi, J., 2010. A case study of dust aerosol radiative properties over Lanzhou, China. Atmos. Chem. Phys. 10, 4283–4293.

Kaynak Göster

2106 1277

Sayıdaki Diğer Makaleler

Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations


Low-cost methodology to estimate vehicle emission factors


Characteristics and contributions of biogenic secondary organic aerosol tracers to PM2.5 in Shanghai, China

Wenfei ZHU, Lina LUO, Zhen CHENG, Naiqiang YAN, Shengrong LOU, Yongpeng MA

Greenhouse gas emission accounting at urban level: A case study of the city of Wroclaw (Poland)

Izabela SÓWKA, Yaroslav BEZYK

A review on nanoparticle dispersion from vehicular exhaust: Assessment of Indian urban environment


Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China

Nan Jiang, Shasha Yin, Yue GUO, Jingyi Lİ, Panru KANG, Ruiqin Zhang, Xiaoyan TANG

Temporal variations of VOC concentrations in Bursa atmosphere


Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions


Combined membrane photocatalytic ozonation and wet absorption of elemental mercury


The relation between columnar and surface aerosol optical properties in a background environment

D. SZCZEPANİK, K.M. Markowicz