Study of the aerosol optical characteristics over the Romanian Black Sea Coast using AERONET data

Present study is focused on the analysis of the similarities and differences in the aerosol properties retrieved from the sun-photometers operating at two sites in Western part of Black Sea, Romanian area, belonging to AERONET network (one on the sea shore at Eforie and the other on the Oil Platform Gloria at about 30 km offshore). Four years data sets (2014–2017) of aerosol optical depth, Ǻngström exponent, single scattering albedo and fine mode fraction, retrieved based on the AERONET algorithms, were used to identify the main aerosol types by season. The study emphasized similar monthly and seasonal variations for aerosol optical properties: mean multi-monthly values of AOD is from 0.1 to 0.3, AE varied between 1 and 2, and FMF varied from 0.7 to about 0.9. The dominant incidence of fine aerosol appears at both sites. Although some annual and seasonal differences between the coastal and marine stations were identified, both sites at the Black See Coast seem to be characterized by same aerosol, with a large fraction of anthropogenic component, composed by fine absorbing and non-absorbing aerosol. Pure marine fraction seems to be present mainly in autumn and in percentages varying from 5% to about 21% of the total mass, depending on the classification scheme. Regardless of the classification scheme used, the results show that dust aerosol is present at both stations less than 10%. Choosing an appropriate threshold range from various schemes to discriminate the aerosol types is not straightforward for sites on Black Sea Coast.

Kaynakça

Ackerman, T.P., Toon, O.B., 1981. Absorption of visible radiation in atmospheres containing mixtures of absorbing and non-absorbing particles. Appl. Optic. 20, 3661–3668.

Albrecht, B.A., 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230.

Barbu, N., Georgescu, F., Stefanescu, V., Stefan, S., 2014. Large-scale mechanisms responsible for heat wave occurrence in Romania, Rom. J. Phys. 59 (9–10), 1109–1126.

Barbu, N., Burada, C., Stefa, S., Georgescu, F., 2016. Changes in the large-scale Atmospheric circulation over Romania between 1961 and 2010 on seasonal basis. Acta Geophys. 64 (2), 510–520.

Beck, C., Jacobeit, J., Jones, P.D., 2007. Frequency and within-type variations of largescale circulation types and their effects on low-frequency climate variability in Central Europe since 1780. Int. J. Climatol. 27, 473–491.

Bohren, C.F., Huffman, D.R., 1983. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York, pp. 531pp.

Dubovik, O., King, M.D., 2000. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 105, 20 673–20 696.

Dubovik, O., Smirnov, A., Holben, B.N., King, M.D., Kaufman, Y.J., Eck, T.F., Slutsker, I., 2000. Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements. J. Geophys. Res. 105, 9791–9806.

Dubovik, O., Holben, B.N., Lapyonok, T., Sinyuk, A., Mishchenko, M.I., Yang, P., Slutsker, I., 2002a. Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett. 10. https://doi.org/10.1029/2001GL014506.

Dubovik, O., Holben, B.N., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanré, D., Slutsker, I., 2002b. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590–608.

Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B.N., Mishchenko, M., Yang, P., Eck, T.F., Volten, H., Munoz, O., Veihelmann, B., van der Zander, Sorokin, M., Slutsker, I., 2006. Application of light scattering by spheroids for accounting for particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 111, D11208. https:// doi.org/10.1029/2005JD006619d.

Dumitrescu, A., Bojariu, R., Birsan, M.V., Marin, L., Manea, A., 2014. Recent climatic changes in Romania from observational data (1961–2013). Theor. Appl. Climatol. https://doi.org/10.1007/s00704-014-1290-0.

Eck, T.F., Holben, B.N., Reid, J.S., Dubovik, O., Smirnov, NT, Slutsker, I., Kinne, S., 1999. Wavelength dependence of optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 104, 31333–31350 O'Neill.

Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M.C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J.G., Spracklen, D.V., Vignati, E., Wild, M., Williams, M., Gilardoni, S., 2015. Particulate matter, air quality and climate: lessons learned and future needs. Atmos. Chem. Phys. 15, 8217–8299.

Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., 2009. Atmospheric composition change: ecosystems-Atmosphere interactions. Atmos. Environ. 43, 5193–5267. https://doi.org/10.1016/j.atmosenv.2009.07.068. 2009.

Giles, D.M., Holben, B.N., Eck, T.F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R., Thompson, A., Schafer, J., 2012. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. 117, D17203. https://doi.org/10.1029/2012JD018127.

Giles, D.M., Sinyuk, A., Sorokin, M.G., Schafer, J.S., Smirnov, A., Slutsker, I., Eck, T.F., Holben, B.N., Lewis, J.R., Campbell, J.R., Welton, E.J., Korkin, S.V., Lyapustin, A.I., 2019. Advancements in the Aerosol Robotic Network(AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 12, 169–209.

Gothard, M., Nemuc, A., Radu, C., Dascalu, S., 2014. An intensive case of Saharan dust intrusion over South East Romania. Rom. Rep. Phys. 66, 509‐519.

Hamill, P., Giordano, M., Ward, C., Giles, D., Holben, B., 2016. An AERONET-based aerosol classification using the Mahalanobis distance. Atmos. Environ. 140, 213–233.

Hansen, J.E., Sato, M., Ruedy, R., 1997. Radiative forcing and climate response. J. Geophys. Res. 102 (D6), 6831–6864.

Haywood, J.M., Shine, K.P., 1995. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett. 22 (5), 603–606.

Heintzenberg, J., Covert, D.C., Van Dingenen, R., 2000. Size distribution and chemical composition of marine aerosols: a compilation and review. Tellus 52B, 1104–1122.

Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998. Aeronet - a federated instrument network and data archive for aerosol characterization. Rem. Sens. Environ. 66, 1–16. https://aeronet.gsfc.nasa.gov/, Accessed date: September 2019 last accessed.

Ichoku, C., Kaufman, Y.J., Remer, L.A., Levy, R., 2004. Global aerosol remote sensing from MODIS. Trace Constituents in the Troposphere and Lower Stratosphere 34, 820–827.

IPCC, 2013. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1535.

Jalal, K.A., Asmat, A., Ahmad, N., 2012. Retrievals of aerosol optical depth and angstrom exponent for identification of aerosols at kuching, sarawak. Adv. Mater. Res. 518, 5734–5737.

Kameda, T., Azumi, E., Fukushima, A., Tang, N., Matsuki, A., KamiyaY, Toriba, A., Hayakawa, K., 2016. Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds. Sci. Rep. 6, 24427.

Lee, J., Kim, J., Song, C.H., Kim, S.B., Chun, Y., Sohn, B.J., Holben, B.N., 2010. Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ. 44, 3110–3117.

Liu, Y., Daum, P.H., Guo, H., Peng, Y., 2008. Dispersion bias, dispersion effect, and the aerosol–cloud conundrum, 727. Environ. Res. Lett. 3, 045021. https://doi.org/10. 1088/1748-9326/3/4/045021.

Liu, X., Xie, X., Yin, Z.Y., Liu, C., Gettelman, A., 2011. A modeling study of the effects of aerosols on clouds and precipitation over East Asia. Theor. Appl. Climatol. 106, 343–354.

Maftei, C., Barbulescu, A., 2008. Statistical analysis of climate evolution in dobrudja region. In: Proceedings of the World Congress on Engineering 2008, vol. II WCE 2008, London, U.K July 2 - 4, 2008.

McCormick, R.A., Ludwig, J.H., 1967. Climate modification by atmospheric aerosols. Science 156 (3780), 1358–1359.

Mielonen, T., Arola, A., Komppula, M., Kukkonen, J., Koskinen, J., de Leeuw, G., Lehtinen, K.E.J., 2009. Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data. Geophys. Res. Lett. 36 (18), L18804. https://doi.org/10.1029/2009GL039609.

Nicolae, V., Talianu, C., Andrei, S., Antonescu, B., Ene, D., Nicolae, D., Dandocsi, A., Toader, V.E., Stefan, S., Savu, T., Vasilescu, J., 2019. Multiyear typology of longrange transported aerosols over Europe. Atmosphere 10 (9), 1–19 2019 482.

Ningombam, S.S., Larson, E.J.L., Dumka, U.C., Estellés, V., Campanelli, M., Steve, C., 2019. Long-term (1995–2018) aerosol optical depth derived using ground based AERONET and SKYNET measurements from aerosol aged-background sites. Atmospheric Pollution Research 10 (2), 608–620.

O’Neill, N.T., Eck, T.F., Smirnov, A., Holben, B.N., Thulasiraman, S., 2003. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. 108 (D17), 4559. https://doi.org/10.1029/2002JD002975.

Pace, G., di Sarra, A., Meloni, D., Piacentino, S., Chamard, P., 2006. Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos. Chem. Phys. 6, 697–713 2006.

Pincus, R., Baker, M.A., 1994. Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature 372, 250–252.

Regayre, L.A., Johnson, J.S., Yoshioka, M., Pringle, K.J., Sexton, D.M.H., Booth, B.B.B., Lee, L.A., Bellouin, N., Carslaw, K.S., 2018. Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF. Atmos. Chem. Phys. 18, 9975–10006.

Rolph, G., Stein, A., Stunder, B., 2017. Real-time environmental applications and display system: READY. Environ. Model. Software 95, 210–228.

Salinas, S.V., Chew, B.N., Liew, S.C., 2009. Retrievals of aerosol optical depth and angstrom exponent from ground–based Sun–photometer data of Singapore. Appl. Optic. 48, 1473–1484.

Salinas, S.V., Chew, B.N., Mohamad, M., Mahmud, M., Liew, S.C., 2013. First measurements of aerosol optical depth and Angstrom exponent number from AERONET's Kuching site. Atmos. Environ. 78, 231–241.

Schmid, B., Michalsky, J.J., Slater, D.W., Barnard, J.C., Halthore, R.N., Liljegren, J.C., Holben, B.N., Eck, T.F., Livingston, J.M., Russell, P.R., Ingold, T., Slutsker, I., 2001. Comparison of columnar water-vapor measurements from solar transmittance methods Appl. Opt 40, 1886–1896.

Shin, S.K., Tesche, M., Noh, Y., Müller, D., 2019. Aerosol-type classification based on AERONET version 3 inversion products Atmos. Meas. Tech. 12, 3789–3803. https:// doi.org/10.5194/amt-12-3789-2019.

Sinyuk, A., Dubovik, O., Holben, B.N., Eck, T.F., Breon, F.M., Martonchik, J., Diner, D.J., Vermote, E.F., Roger, J.C., Lapyonok, T., Slutsker, I., 2007. Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data. Rem. Sens. Environ. 107 (1–2), 90–108.

Sinyuk, A., Holben, B.N., Smirnov, A., Eck, T.F., Slutsker, I., Schafer, J.S., Giles, D.M., Sorokin, M., 2012. Assessment of error in aerosol optical depth measured by AERONET due to aerosol forward scattering. Geophys. Res. Lett. 39, L23806. https:// doi.org/10.1029/2012GL053894.

Smirnov, A., Holben, B.N., Eck, T.F., Dubovik, O., Slutsker, I., 2000. Cloud screening and quality control algorithms for the AERONET database. Rem.Sens.Env. 73, 337–349.

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System. American Meteorological Societyhttps://doi.org/10.1175/BAMS-D-14-00110.

Stefan, S., Mihai, L., Nicolae, D., Boscornea, A., 2011a. Ångström turbidity in the lower layers of the troposphere. Environ. Eng. Manag. J. 10 (1), 133–138.

Stefan, S., Filip, L., Nemuc, A., 2011b. Study of the aerosol optical properties at two AERONET stations from Romania. Environ. Eng. Manag. J. 10 (1), 147–153.

Stefan, S., 2019. A review of AERONET sun-photometer measurements of the aerosol properties at site Eforie Nord, Romania. Ann. Acad. Rom. Sci. 4 (1), 85–106.

Stier, P., Seinfeld, J.H., Kinne, S., Feichter, J., Boucher, O., 2006. Impact of nonabsorbing anthropogenic aerosols on clear-sky atmospheric absorption. J. Geophys. Res. 111, 1–11.

Tan, F., Lim, H.S., Abdullah, K., Yoon, T.L., Holben, B., 2015. AERONET data–based determination of aerosol types. Atmos. Poll. Res. 6, 682–695. Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., Zhang, C., 2012. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 50 (2), 1–62.

Timpu, S., Sfîca, L., Dobri, R.V., Cazacu, M.M., Nita, A.I., Birsan, M.V., 2020. Tropospheric dust and associated atmospheric circulations over the mediterranean region with focus on Romania's territory. Atmosphere 11, 349. https://doi.org/10. 3390/atmos11040349.

Tveito, O.E., Huth, R., 2016. Circulation-type classifications in Europe: results of the COST 733 action. Int. J. Climatol. 36, 2671–2672.

Toledano, C., Cachorro, V.E., Berjon, A., de Frutos, A.M., Sorribas, M., de la Morena, B.A., Goloub, P., 2007. Aerosol optical depth and angstrom exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q. J. R. Meteorol. Soc. 133, 795–807.

Voinea, S., Stefan, S., 2019. Study of the Ångström turbidity over Romanian Black Sea coast. J. Atmos. Sol. Terr. Phys. 182, 67–78.

Twomey, S., 1977. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152.

Voinea, S., Manolache, G., Iorga, G., Stefan, S., 2018. Relationships between PM10 mass concentrations and aerosol optical parameters over Magurele, Romania. Rom. Rep. Phys. 70, 705.

Zheng, C., Zhao, C., Zhu, Y., Wang, Y., Shi, Y., Wu, X., Chenn, T., Wu, F., Qiu, Y., 2017. Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmos. Chem. Phys. 17, 13473–13489.

Kaynak Göster