Spaceborne lidar retrieved composite and speciated aerosol extinction profiles and optical depths over India: A decade of observations

Despite several independent observational studies, a comprehensive picture on the aerosol vertical distributionand its spatial gradients has not yet evolved over the Indian subcontinent. The present study analyses around 10years (June 2006 to December 2016) of version 3 level 3 CALIPSO (Cloud-Aerosol Lidar and Infrared PathfinderSatellite Observation) spaceborne lidar (light detection and ranging) retrieved night time, cloud free verticalextinction profiles (at 532 nm) of composite aerosol, and its major species (dust, polluted dust and smoke) tounderstand the three-dimensional distribution of aerosols over India. The shape and vertical extent of the ex-tinction profiles varied in space and time. The vertical extent of the aerosol distribution is shallower in the colderseasons compared to that of warmer seasons, which could potentially be due to suppressed convection duringcolder months. Meridional gradients are observed in the near-surface extinction coefficients (increasing towardsnorth of India). Polluted dust (defined as a mixture of dust and smoke) emerged as the dominant aerosol speciesover most parts of the study region. Over the north western and central India, dust aerosols contributed the mostto the aerosol optical depths and extinction profiles during the summer and monsoon months. Smoke aerosolsprevailed over the southern and north eastern parts of India, which are attributed to biomass, agriculturalburning, and long-range transport. Boundary layer aerosol optical depths (AOD) contributed to columnar AODsignificantly during post-monsoon and winter, while the elevated-AOD had almost an equal share in columnarAOD during the summer and monsoon seasons.

Kaynakça

Aruna, K., Kumar, T.L., Rao, D.N., Murthy, B.K., Babu, S.S., Moorthy, K.K., 2013. Blackcarbon aerosols in a tropical semi-urban coastal environment: effects of boundarylayer dynamics and long range transport. J. Atmos. Sol. Terr. Phys. 104, 116–125.

Babu, S.S., Moorthy, K.K., Manchanda, R.K., Sinha, P.R., Satheesh, S.K., Vajja, D.P.,Srinivasan, S., Kumar, V.A., 2011a. Free tropospheric black carbon aerosol mea-surements using high altitude balloon: do BC layers build“their own homes”up inthe atmosphere? Geophys. Res. Lett. 38 (8).

Babu, C.A., Sivaprasad, P., 2014. Variability and mechanisms of vertical distribution ofaerosols over the Indian region. Int. J. Rem. Sens. 35 (22), 7691–7705.

Babu, S.S., Sreekanth, V., Moorthy, K.K., Mohan, M., Kirankumar, N.V.P.,Subrahamanyam, D.B., Gogoi, M.M., Kompalli, S.K., Beegum, N., Chaubey, J.P.,Kumar, V.A., 2011b. Vertical profiles of aerosol black carbon in the atmosphericboundary layer over a tropical coastal station: perturbations during an annular solareclipse. Atmos. Res. 99 (3–4), 471–478.

Babu, S.S., Sreekanth, V., Nair, V.S., Satheesh, S.K., Moorthy, K.K., 2010. Vertical profileof aerosol single scattering albedo over west coast of India during W_ICARB. J.Atmos. Sol. Terr. Phys. 72 (11–12), 876–882.

Badarinath, K.V.S., Prasad, K.V., 2011. Carbon dioxide emissions from forest biomassburning in India. Global Environ. Res. 15, 45–52.

Badarinath, K.V.S., Kharol, S.K., Kaskaoutis, D.G., Sharma, A.R., Ramaswamy, V.,Kambezidis, H.D., 2010. Long-range transport of dust aerosols over the Arabian Seaand Indian region d a case study using satellite data and ground-based measurements.Global Planet. Change 72, 164–181.

Bourgeois, Q., Ekman, A.M., Renard, J.B., Krejci, R., Devasthale, A., Frida, A.M.B.,Riipinen, I., Berthet, G., Tackett, J.L., 2018. How much of the global aerosol opticaldepth is found in the boundary layer and free troposphere? Atmos. Chem. Phys. 18,7709–7720.

Brooks, J., Allan, J.D., Williams, P.I., Liu, D., Fox, C., Haywood, J., Langridge, J.M.,Highwood, E.J., Kompalli, S.K., O'Sullivan, D., Babu, S.S., 2019. Vertical and hor-izontal distribution of sub-micron aerosol chemical composition and physical char-acteristics across Northern India, during the pre-monsoon and monsoon seasons.Atmos. Chem. Phys. 19, 5615–5634.

Choudhry, P., Misra, A., Tripathi, S.N., 2012. Study of MODIS derived AOD at threedifferent locations in the Indo Gangetic Plain: Kanpur, gandhi college and nainital.Ann. Geophys. 30 (10).

Das, S., Dey, S., Dash, S.K., Basil, G., 2013. Examining mineral dust transport over theIndian subcontinent using the regional climate model. RegCM4. 1. Atmospheric re-search 134, 64–76.

Duncan, B.N., Martin, R.V., Staudt, A.C., Yevich, R., Logan, J.A., 2003. Interannual andseasonal variability of biomass burning emissions constrained by satellite observa-tions. J. Geophys. Res.: Atmosphere 108 (D2) .ACH-1.

Gadhavi, H., Jayaraman, A., 2006. October. Airborne lidar study of the vertical dis-tribution of aerosols over Hyderabad, an urban site in central India, and its im-plication for radiative forcing calculations. In: Ann. Geophys. 24. pp. 2461–2470 10.

Gautam, R., Hsu, N.C., Kafatos, M., Tsay, S.C., 2007. Influences of winter haze on fog/lowcloud over the Indo‐Gangetic plains. J. Geophys. Res.: Atmosphere 112 (D5).

Huang, L., Jiang, J.H., Tackett, J.L., Su, H., Fu, R., 2013. Seasonal and diurnal variationsof aerosol extinction profile and type distribution from CALIPSO 5-year observations.J. Geophys. Res. Atmos. 118, 4572–4596.https://doi.org/10.1002/jgrd.50407.

Jethva,H., Chand, D., Torres, O., Gupta, P., Lyapustin, A., Patadia, F., 2018. Agriculturalburning and air quality over northern India: a synergistic analysis using NASA's A-train satellite data and ground measurements. Aerosol Air Qual. Res. 18, 1756–1773.

Kandula, N., Vakacherla, S., Bade, M., Kiranmayi, S., 2017. Diurnal variations in theaerosol physical, optical and altitude distributional characteristics over three loca-tions in eastern India: implications to black carbon radiative forcing. Terr. Atmos.Ocean Sci. 28 (3).

Kaskaoutis, D.G., Singh, R.P., Gautam, R., Sharma, M., Kosmopoulos, P.G., Tripathi, S.N.,2012. Variability and trends of aerosol properties over Kanpur, northern India usingAERONET data (2001–10). Environ. Res. Lett. 7, 024003.

Kedia, S., Ramachandran, S., Holben, B.N., Tripathi, S.N., 2014. Quantification of aerosoltype, and sources of aerosols over the Indo-Gangetic Plain. Atmos. Environ. 98,607–619.

Kim, S.W., Berthier, S., Raut, J.C., Chazette, P., Dulac, F., Yoon, S.C., 2008. Validation ofaerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys. 8 (13), 3705–3720.

Kim, M.H., Omar, A.H., Vaughan, M.A., Winker, D.M., Trepte, C.R., Hu, Y., Liu, Z., Kim,S.W., 2017. Quantifying the low bias of CALIPSO's column aerosol optical depth dueto undetected aerosol layers. J. Geophys. Res.: Atmosphere 122 (2), 1098–1113.

Kim, M.H., Omar, A.H., Tackett, J.L., Vaughan, M.A., Winker, D.M., Trepte, C.R., Hu, Y.,Liu, Z., Poole, L.R., Pitts, M.C., Kar, J., 2018. The CALIPSO version 4 automatedaerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 11 (11).

Komppula, M., Mielonen, T., Arola, A., Korhonen, K., Lihavainen, H., Hyvärinen, A.P.,Baars, H., Engelmann, R., Althausen, D., Ansmann, A., Müller, D., 2012. One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi inIndia–Seasonal characteristics of the aerosol vertical structure. Atmos. Chem. Phys.12 (10), 4513–4524.

Liu, T., Marlier, M.E., DeFries, R.S., Westervelt, D.M., Xia, K.R., Fiore, A.M., Mickley, L.J.,Cusworth, D.H., Milly, G., 2018. Seasonal impact of regional outdoor biomassburning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmos.Environ. 172, 83–92.

Ma, X., Bartlett, K., Harmon, K., Yu, F., 2013. Comparison of AOD between CALIPSO andMODIS: significant differences over major dust and biomass burning regions. Atmos.Meas. Tech. 6 (9), 2391–2401.

Mehta, M., Singh, N., 2018. Global trends of columnar and vertically distributed prop-erties of aerosols with emphasis on dust, polluted dust and smoke-inferences from 10-year long CALIOP observations. Rem. Sens. Environ. 208, 120–132.

Misra, A., Tripathi, S.N., Kaul, D.S., Welton, E.J., 2012. Study of MPLNET-derived aerosolclimatology over Kanpur, India, and validation of CALIPSO level 2 version 3 back-scatter and extinction products. J. Atmos. Ocean. Technol. 29 (9), 1285–1294.

Nair, V.S., Moorthy, K.K., Alappattu, D.P., Kunhikrishnan, P.K., George, S., Nair, P.R.,Babu, S.S., Abish, B., Satheesh, S.K., Tripathi, S.N., Niranjan, K., 2007. Wintertimeaerosol characteristics over the Indo‐Gangetic Plain (IGP): impacts of local boundarylayer processes and long‐range transport. J. Geophys. Res.: Atmosphere 112 (D13).

Niranjan, K., Madhavan, B.L., Sreekanth, V., 2007a. Micro pulse lidar observation of highaltitude aerosol layers at Visakhapatnam located on the east coast of India. Geophys.Res. Lett. 34, L03815.https://doi.org/10.1029/2006GL028199.

Niranjan, K., Rao, B.M., Brahmanandam, P.S., Madhavan, B.L., Sreekanth, V., Moorthy,K.K., 2005. November. Spatial characteristics of aerosol physical properties over thenortheastern parts of peninsular India. Ann. Geophys. 23 (10), 3219.

Niranjan,K., Spandana, B., Devi, T.A., Sreekanth, V., Madhavan, B.L., 2011.Measurements of aerosol intensive properties over Visakhapatnam, India for 2007.Ann. Geophys. 29 (6).

Niranjan, K., Sreekanth, V., Madhavan, B.L., Krishna Moorthy, K., 2007b. Aerosol phy-sical properties and Radiative forcing at the outflow region from the Indo‐Gangeticplains during typical clear and hazy periods of wintertime. Geophys. Res. Lett.34 (19).

Omar, A.H., Winker, D.M., Tackett, J.L., Giles, D.M., Kar, J., Liu, Z., Vaughan, M.A.,Powell, K.A., Trepte, C.R., 2013. CALIOP and AERONET aerosol optical depth com-parisons: one sizefits none. J. Geophys. Res.: Atmosphere 118 (10), 4748–4766.

Omar, A.H., Winker, D.M., Vaughan, M.A., Hu, Y., Trepte, C.R., Ferrare, R.A., Lee, K.P. Hostetler, C.A., Kittaka, C., Rogers, R.R., Kuehn, R.E., 2009. The CALIPSO automatedaerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol.26 (10), 1994–2014.

Padmakumari, B., Maheskumar, R.S., Morwal, S.B., Harikishan, G., Konwar, M., Kulkarni,J.R., Goswami, B.N., 2013. Aircraft observations of elevated pollution layers near thefoothills of the Himalayas during CAIPEEX‐2009. Q. J. R. Meteorol. Soc. 139 (672),625–638.

Pandithurai, G., Pinker, R.T., Takamura, T., Devara, P.C.S., 2004. Aerosol radiative for-cing over a tropical urban site in India. Geophys. Res. Lett. 31, L12107.https://doi.org/10.1029/2004GL019702.

Panicker, A.S., Pandithurai, G., Safai, P.D., Dipu, S., Prabha, T.V., Konwar, M., 2014.Observations of black carbon induced semi direct effect over Northeast India. Atmos.Environ. 98, 685–692.

Prijith, S.S., Aloysius, M., Mohan, M., 2013. Global aerosol source/sink map. Atmos.Environ. 80, 533–539.https://doi.org/10.1016/j.atmosenv.2013.08.038.

Prijith, S.S., Babu, S.S., Lakshmi, N.B., Satheesh, S.K., Moorthy, K.K., 2016. Meridionalgradients in aerosol vertical distribution over Indian Mainland: observations andmodel simulations. Atmos. Environ. 125, 337–345.

Ramachandran, S., Rajesh, T.A., 2008. Asymmetry parameters in the lower tropospherederived from aircraft measurements of aerosol scattering coefficients over tropicalIndia. J. Geophys. Res. 113, D16212.https://doi.org/10.1029/2008JD009795.

Ramachandran, S., Kedia, S., Sheel, V., 2015. Spatiotemporal characteristics of aerosols inIndia: observations and model simulations. Atmos. Environ. 116, 225–244.

Ramachandran, S., Rengarajan, R., Jayaraman, A., Sarin, M.M., Das, S.K., 2006. Aerosolradiative forcing during clear, hazy, and foggy conditions over a continental pollutedlocation in north India. J. Geophys. Res.: Atmosphere 111 (D20).

Ramanathan, V., Crutzen, P.J., Lelieveld, J., Mitra, A.P., Althausen, D., Anderson, J.,Andreae, M.O., Cantrell, W., Cass, G.R., Chung, C.E., Clarke, A.D., 2001. IndianOcean Experiment: an integrated analysis of the climate forcing and effects of thegreat Indo‐Asian haze. J. Geophys. Res.: Atmosphere 106 (D22), 28371–28398.

Royer, P., Raut, J.C., Ajello, G., Berthier, S., Chazette, P., 2010. Synergy between CALIOPand MODIS instruments for aerosol monitoring: application to the Po Valley. Atmos.Meas. Tech. 3 (4), 893–907.

Safai, P.D., Raju, M.P., Maheshkumar, R.S., Kulkarni, J.R., Rao, P.S.P., Devara, P.C.S.,2012. Vertical profiles of black carbon aerosols over the urban locations in SouthIndia. Sci. Total Environ. 431, 323–331.

Sarangi, C., Tripathi, S.N., Mishra, A.K., Goel, A., Welton, E.J., 2016. Elevated aerosollayers and their radiative impact over Kanpur during monsoon onset period. J.Geophys. Res. Atmos. 121, 7936–7957.https://doi.org/10.1002/2015JD024711.

Satheesh, S.K., Vinoj, V., Moorthy, K.K., 2006. Vertical distribution of aerosols over anurban continental site in India inferred using a micro pulse lidar. Geophys. Res. Lett.33, L20816.https://doi.org/10.1029/2006GL027729.

Satheesh, S.K., 2002. Letter to the Editor Aerosol radiative forcing over land: effect ofsurface and cloud reflection. In: Ann. Geophys. 20. pp. 2105–2109 12.

Sathyanadh,A., Prabhakaran, T., Patil, C., Karipot, A., 2017. Planetary boundary layerheight over the Indian subcontinent: variability and controls with respect to mon-soon. Atmos. Res. 195, 44–61.

Sheridan, P.J., Andrews, E., Ogren, J.A., Tackett, J.L., Winker, D.M., 2012. Verticalprofiles of aerosol optical properties over central Illinois and comparison with surfaceand satellite measurements. Atmos. Chem. Phys. 12, 11695–11721.https://doi.org/10.5194/acp-12-11695-2012.

Shikwambana, L., Sivakumar, V., 2018. Global distribution of aerosol optical depth in2015 using CALIPSO level 3 data. J. Atmos. Sol. Terr. Phys. 173, 150–159.

Sofiev, M., Vankevich, R., Ermakova, T., Hakkarainen, J., 2013. Global mapping ofmaximum emission heights and resulting vertical profiles of wildfire emissions.Atmos. Chem. Phys. 13, 7039–7052.https://doi.org/10.5194/acp-13-7039-2013.

Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., Miller Jr.,H.L., Chen, Z., 2007. Climate Change 2007: the Physical Science Basis. CambridgeUniversity Press, pp. 996.

Sreekanth, V., 2013. Satellite derived aerosol optical depth climatology over Bangalore,India. Advances in Space Research 51 (12), 2297–2308.https://doi.org/10.1016/j.asr.2013.01.022.

Sreekanth, V., 2014. On the classification and sub-classification of aerosol key types oversouth central peninsular India: MODIS–OMI algorithm. Sci. Total Environ. 468,1086–1092.

Sreekanth, V., 2016. Discussion on linear long-term trends in aerosol and cloud propertiesover India and its surrounding waters. Adv. Space Res. 57 (10), 2104–2114.

Sreekanth, V., Kulkarni, P., 2013. Spatio-temporal variations in columnar aerosol opticalproperties over Bay of Bengal: signatures of elevated dust. Atmos. Environ. 69,249–257.

Sreekanth, V., Mahesh, B., Niranjan, K., 2018. Gradients in PM2.5 in India:five city study.Urban Climate 25, 99–108.

Sreekanth, V., Mahesh, B., Niranjan, K., 2017. Satellite remote sensing offine particulateair pollutants over Indian mega cities. Adv. Space Res. 60 (10), 2268–2276.

Sreekanth, V., Moorthy, K.K., Satheesh, S.K., Babu, S.S., Nair, V.S., Niranjan, K., 2011.Airborne measurements of aerosol scattering properties above the MABL over Bay ofBengal during W ICARB-characteristics and spatial gradients. Ann. Geophys. 29 (5).

Sreekanth, V., Niranjan, K., Madhavan, B.L., 2007. Radiative forcing of black carbon overeastern India. Geophys. Res. Lett. 34 (17).

Tackett, J.L., Winker, D.M., Getzewich, B.J., Vaughan, M.A., Young, S.A., Kar, J., 2018.CALIPSO lidar level 3 aerosol profile product: version 3 algorithm design. Atmos.Meas. Tech. 11 (7), 4129–4152.

Tan, I., Storelvmo, T., Choi, Y.-S., 2014. Spaceborne lidar observations of the ice-nucle-ating potential of dust, polluted dust, and smoke aerosols in mixed-phase clouds. J.Geophys. Res. Atmos. 119, 6653–6665.https://doi.org/10.1002/2013jd021333.

Toth,T.D., Campbell, J.R., Reid, J.S., Tackett, J.L., Vaughan, M.A., Zhang, J., Marquis,J.W., 2018. Minimum aerosol layer detection sensitivities and their subsequent im-pacts on aerosol optical thickness retrievals in CALIPSO level 2 data products. Atmos.Meas. Tech. 11 (1), 499–514.

Tripathi, S.N., Dey, S., Tare, V., Satheesh, S.K., Lal, S., Venkataramani, S., 2005. Enhancedlayer of black carbon in a north Indian industrial city. Geophys. Res. Lett. 32, L12802.https://doi.org/10.1029/2005GL022564.

Vadrevu, K.P., Lasko, K., Giglio, L., Justice, C., 2015. Vegetationfires, absorbing aerosolsand smoke plume characteristics in diverse biomass burning regions of Asia. Environ.Res. Lett. 10 (10), 105003.

Vaishya, A., Babu, S.N.S., Jayachandran, V., Gogoi, M.M., Lakshmi, N.B., Moorthy, K.K.,Satheesh, S.K., 2018. Large contrast in the vertical distribution of aerosol opticalproperties and radiative effects across the Indo-Gangetic Plain during theSWAAMI–RAWEX campaign. Atmos. Chem. Phys. 18 (23), 17669–17685.

Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J.F., Crouzille, B.,Boucher, O., Streets, D.G., 2006. Emissions from open biomass burning in India: in-tegrating the inventory approach with high‐resolution Moderate Resolution ImagingSpectroradiometer (MODIS) active‐fire and land cover data. Global Biogeochem.Cycles 20 (2).

Vernier, J.P., Thomason, L.W., Kar, J., 2011. CALIPSO detection of an Asian tropopauseaerosol layer. Geophys. Res. Lett. 38 (7).

Winker, D.M., Vaughan, M.A., Omar, A., Hu, Y., Powell, K.A., Liu, Z., Hunt, W.H., Young,S.A., 2009. Overview of the CALIPSO mission and CALIOP data processing algo-rithms. J. Atmos. Ocean. Technol. 26 (11), 2310–2323.

Winker, D.M., Pelon, J., Coakley Jr., J.A., Ackerman, S.A., Charlson, R.J., Colarco, P.R.,Flamant, P., Fu, Q., Hoff, R.M., Kittaka, C., Kubar, T.L., Le Treut, H., Mccormick,M.P., Megie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M.A., Wielicki, B.A., 2010.The CALIPSO mission: a global 3D view of aerosols and clouds. Bull. Am. Meteorol.Soc. 91, 1211–1229.

Winker, D.M., Tackett, J.L., Getzewich, B.J., Liu, Z., Vaughan, M.A., Rogers, R.R., 2013.The global 3-D distribution of tropospheric aerosols as characterized by CALIOP.Atmos. Chem. Phys. 13 (6), 3345–3361.

Kaynak Göster

258 183

Arşiv
Sayıdaki Diğer Makaleler

Characterization and behavior of Hydrogen Sulfide plumes released fromactive sulfide-tar springs, Hit-Iraq

Bayan Muhie HUSSİEN, Muwafaq Ayesh RABEEA, Marwan Mohammed FARHAN

Source and health risk apportionment for PM2.5collected in Sha-Lu area,Taiwan

Perng-Jy TSAİ, Ming-Yeng LİN, Li-Hao YOUNG, Bing-Fang HWANG, Yu-Cheng CHEN, Hui-Tsung HSU

Trace element leaf accumulation in native trees from the remainingSemideciduous Atlantic Forest in Brazil

Marcelle DAFRE-MARTİNELLİ, Marisa DOMİNGOS, Ana Maria G. FİGUEİREDO

A reactivity analysis of volatile organic compounds in a Rio de Janeiro urbanarea impacted by vehicular and industrial emissions

Guilherme DANTAS, Bruno SİCİLİANO, Cleyton M. da SİLVA, Graciela ARBİLLA

Pollutant measurements at near road and urban background sites in NewYork, USA

O.V. RATTİGAN, A.C. CARPENTER, K.L. CİVEROLO, H.D. FELTON

Exposure to particulate matter and gaseous pollutants during cabcommuting in Nur-Sultan city of Kazakhstan

Mehdi Amouei TORKMAHALLEH, Motahareh NASERİ, Talgat ABDRAKHMANOV, Akzhol ISHANOV, Dhawal SHAH, Philip K. HOPKE, Parya BROOMANDİ, Jong Hun KİM, Prashant Kumar RAI

Typical industrial sector-based volatile organic compounds source profilesand ozone formation potentials in Zhengzhou, China

Yishun ZHANG, Li CHEN, Qishe Yan, Shijie HAN, Qingyan ZHAO, Liuming YANG, Yonggang LİU, Ruiqin Zhang

Development of a simulation chamber for the evaluation of dermalabsorption of volatile organic compounds

Soraya PONTES-LOPEZ, Julia MORENO, Francesc A. ESTEVE-TURRİLLAS, Sergio ARMENTA

Mass balance of mercury in a pilot scale mercury recovery plant using thermal roasting technology

Eun-Song LEE, Seung-Ki BACK, A.H.M. MOJAMMAL, Yong-Chil SEO, Ha-Na JANG

Investigation of indoor air quality in the ventilated ice rink arena

Ewa BRAGOSZEWSKA, Agnieszka PALMOWSKA, Izabela BİEDRON