Rapid improvement in air quality due to aerosol-pollution control during 2012–2018: An evidence observed in Kunshan in the Yangtze River Delta, China

China's severe air pollution was widely concerned in the past decade. A rigorous emission control has been implemented by the Chinese government since 2013. It is essential to evaluate changes of air pollutants to understand effectiveness of present air-pollution control on improving air quality. Here, we investigate temporal trends of air pollutants, including PM2.5, SO2, NO2 and O3, observed at 12 sites over the Kunshan area in the Yangtze River Delta region during 2012–2018 using Mann-Kendall statistical test. Overall, significant reduction trends of monthly PM2.5 (−7.4% yr−1 ) were observed, together with reduction in the PM2.5 to CO ratio (−5.8% yr−1 ), an indicator of secondary aerosol production. Secondary aerosol precursors, SO2 (−10.3% yr−1 ) and NO2 (−4.4% yr−1 ) also presented statistically significant reduction trends. These results reflect the consequence of emission control that leads to substantial reduction in the bulk PM2.5 concentration, as well as secondary aerosols likely formed from SO2 and NO2. However, O3 had statistically significant increase trend (+3.4% yr−1 ) during 2014–2018. Limited formation of O3 under high PM2.5 and NO2 concentrations condition was found at daytime in summer, which might reflect one of the reasons causing the increase trend of O3 under the current reduction scenario of PM2.5 and NO2. Potential source contribution function analysis demonstrated that the transport from the regions located to northwest of Kunshan could contribute to high concentrations of PM2.5 in all seasons, while the south and southeast could be the high potential as source areas for O3.

Kaynakça

Chambers, S.D., Podstawczyńska, A., Pawlak, W., Fortuniak, K., Williams, A.G., Griffiths, A.D., 2019. Characterizing the state of the urban surface layer using radon-222. J. Geophys. Res.: Atmosphere 124, 770–788. https://doi.org/10.1029/2018jd029507.

Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y., Tong, D., Zheng, Y., Li, Y., Li, J., Zhang, Q., He, K., 2019. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based decomposition analysis. Atmos. Chem. Phys. 19, 6125–6146. https://doi.org/10.5194/acp-19-6125-2019.

Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., Su, H., 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2. https://doi.org/10. 1126/sciadv.1601530.

de Gouw, J.A., 2005. Budget of organic carbon in a polluted atmosphere: results from the new England air quality study in 2002. J. Geophys. Res. 110. https://doi.org/10. 1029/2004jd005623.

Ding, A., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Xu, Z., Xie, Y., Qi, X., Shen, Y., Sun, P., Wang, J., Wang, L., Sun, J., Yang, X.Q., Qin, W., Zhang, X., Cheng, W., Liu, W., Pan, L., Fu, C., 2019. Significant reduction of PM2.5 in eastern China due to regionalscale emission control: Evidences from the SORPES station, 2011-2018. Atmos. Chem. Phys. Discuss. 1–21. https://doi.org/10.5194/acp-2019-407. 2019.

Ding, A.J., Huang, X., Nie, W., Sun, J.N., Kerminen, V.M., Petäjä, T., Su, H., Cheng, Y.F., Yang, X.Q., Wang, M.H., Chi, X.G., Wang, J.P., Virkkula, A., Guo, W.D., Yuan, J., Wang, S.Y., Zhang, R.J., Wu, Y.F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., Fu, C.B., 2016. Enhanced haze pollution by black carbon in megacities in China. Geophys. Res. Lett. 43, 2873–2879. https://doi.org/10.1002/2016GL067745.

Dockery, D.W., Cunningham, J., Damokosh, A.I., Neas, L.M., Spengler, J.D., Koutrakis, P., Ware, J.H., Raizenne, M., Speizer, F.E., 1996. Health effects of acid aerosols on North American children: respiratory symptoms. Environ. Health Perspect. 104, 500–505. https://doi.org/10.1289/ehp.96104500.

Draxler, R.R., Rolph, G.D., 2003. HYSPLIT (HYbrid Single- Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD available at: (last access: 28 November 2019).. http:// www.arl.noaa.gov/ready/hysplit4.html.

Fu, Y., Liao, H., Yang, Y., 2019. Interannual and decadal changes in tropospheric ozone in China and the associated chemistry-climate interactions: a review. Adv. Atmos. Sci. 36, 975–993. https://doi.org/10.1007/s00376-019-8216-9.

Guo, S., Hu, M., Zamora, M.L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M.J., Zhang, R., 2014. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. U.S.A. 111, 17373–17378. https://doi.org/10.1073/ pnas.1419604111.

Hu, W.W., Hu, M., Yuan, B., Jimenez, J.L., Tang, Q., Peng, J.F., Hu, W., Shao, M., Wang, M., Zeng, L.M., Wu, Y.S., Gong, Z.H., Huang, X.F., He, L.Y., 2013. Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China. Atmos. Chem. Phys. 13, 10095–10112. https://doi.org/10. 5194/acp-13-10095-2013.

Huang, R.J., Zhang, Y., Bozzetti, C., Ho, K.F., Cao, J.J., Han, Y., Daellenbach, K.R., Slowik, J.G., Platt, S.M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S.M., Bruns, E.A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., SchnelleKreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., Prevot, A.S., 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222. https://doi.org/10.1038/nature13774.

Huang, X.F., He, L.Y., Xue, L., Sun, T.L., Zeng, L.W., Gong, Z.H., Hu, M., Zhu, T., 2012. Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmos. Chem. Phys. 12, 4897–4907. https://doi.org/10. 5194/acp-12-4897-2012.

Knowlton, K., Rosenthal Joyce, E., Hogrefe, C., Lynn, B., Gaffin, S., Goldberg, R., Rosenzweig, C., Civerolo, K., Ku, J.-Y., Kinney Patrick, L., 2004. Assessing ozonerelated health impacts under a changing climate. Environ. Health Perspect. 112, 1557–1563. https://doi.org/10.1289/ehp.7163.

Koukouli, M.E., Theys, N., Ding, J., Zyrichidou, I., Mijling, B., Balis, D., van der A, R.J., 2018. Updated SO2 emission estimates over China using OMI/Aura observations, Atmos. Meas. Tech. 11, 1817–1832. https://doi.org/10.5194/amt-11-1817-2018.

Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621. https://doi.org/10.2307/2280779.

Kunshan local chronicles Compilation Committee Office, 2018. Kunshan Almanac. Jiangsu Phoenix Science Press, pp. 32–35 (in Chinese).

Li, K., Jacob, D.J., Liao, H., Shen, L., Zhang, Q., Bates, K.H., 2019. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. 116, 422–427. https://doi.org/10.1073/pnas.1812168116.

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13, 245–259. https:// doi.org/10.2307/1907187.

Petit, J.E., Favez, O., Albinet, A., Canonaco, F., 2017. A user-friendly tool for comprehensive evaluation of the geographical origins of atmospheric pollution: wind and trajectory analyses. Environ. Model. Softw 88, 183–187. https://doi.org/10.1016/j. envsoft.2016.11.022.

Pohlert, T., 2018. Non-Parametric Trend Tests and Change-Point Detection, R package. https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf available at: (last access: 28 November 2019).

Polissar, A.V., Hopke, P.K., Paatero, P., Kaufmann, Y.J., Hall, D.K., Bodhaine, B.A., Dutton, E.G., Harris, J.M., 1999. The aerosol at Barrow, Alaska: long-term trends and source locations. Atmos. Environ. 33, 2441–2458. https://doi.org/10.1016/S1352- 2310(98)00423-3.

Sen, P.K., 1968. Estimates of the regression coefficient based on kendall's tau. J. Am. Stat. Assoc. 63, 1379–1389. https://doi.org/10.2307/2285891.

Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C.J., Fushimi, A., Enami, S., Arangio, A.M., Fröhlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P.S.J., Lelieveld, J., Lucas, K., Morino, Y., Pöschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., Sato, K., 2017. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 51, 13545–13567. https://doi.org/10.1021/acs.est. 7b04417.

Sun, Y., Jiang, Q., Wang, Z., Fu, P., Li, J., Yang, T., Yin, Y., 2014. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J. Geophys. Res. Atmos. 119, 4380–4398. https://doi.org/10.1002/2014JD021641. Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., Zheng, H., Ji, D., Li, J., Tang, X., Fu, P., Wang, Z., 2016a. Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015. Sci. Rep. 6, 27151. https://doi.org/10.1038/ srep27151.

Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D.R., Wang, Z., 2016b. Primary and secondary aerosols in Beijing in winter: sources, variations and processes. Atmos. Chem. Phys. 16, 8309–8329. https://doi.org/10.5194/acp-16-8309-2016.

Sun, Y.L., Wang, Z.F., Du, W., Zhang, Q., Wang, Q.Q., Fu, P.Q., Pan, X.L., Li, J., Jayne, J., Worsnop, D.R., 2015. Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmos. Chem. Phys. 15, 14549–14591. https://doi.org/10.5194/acpd-15- 14549-2015.

Tian, H.Z., Wang, Y., Xue, Z.G., Cheng, K., Qu, Y.P., Chai, F.H., Hao, J.M., 2010. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmos. Chem. Phys. 10, 11905–11919. https://doi.org/10. 5194/acp-10-11905-2010.

Waked, A., Favez, O., Alleman, L.Y., Piot, C., Petit, J.E., Delaunay, T., Verlinden, E., Golly, B., Besombes, J.L., Jaffrezo, J.L., Leoz-Garziandia, E., 2014. Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos. Chem. Phys. 14, 3325–3346. https://doi.org/10.5194/acp-14-3325-2014.

Wang, G., Zhang, R., Gomez, M.E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P.S., Duce, R.A., Kolb, C.E., Molina, M.J., 2016a. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1616540113.

Wang, G., Zhang, R., Gomez, M.E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P.S., Duce, R.A., Kolb, C.E., Molina, M.J., 2016b. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. 113, 13630–13635. https://doi.org/10.1073/pnas. 1616540113.

Wang, T., Wang, P., Theys, N., Tong, D., Hendrick, F., Zhang, Q., Van Roozendael, M., 2018. Spatial and temporal changes in SO2 regimes over China in the recent decade and the driving mechanism. Atmos. Chem. Phys. 18, 18063–18078. https://doi.org/ 10.5194/acp-18-18063-2018.

Xie, Y., Ding, A., Nie, W., Mao, H., Qi, X., Huang, X., Xu, Z., Kerminen, V.-M., Petäjä, T., Chi, X., Virkkula, A., Boy, M., Xue, L., Guo, J., Sun, J., Yang, X., Kulmala, M., Fu, C., 2015. Enhanced sulfate formation by nitrogen dioxide: implications from in-situ observations at the SORPES Station. J. Geophys. Res.: Atmosphere. https://doi.org/ 10.1002/2015JD023607. n/a-n/a.

Xu, J., Tie, X., Gao, W., Lin, Y., Fu, Q., 2019. Measurement and model analyses of the ozone variation during 2006 to 2015 and its response to emission change in megacity Shanghai, China. Atmos. Chem. Phys. 19, 9017–9035. https://doi.org/10.5194/acp19-9017-2019.

Zhai, S., Jacob, D.J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., Liao, H., 2019. Fine particulate matter (PM2.5) trends in China, 2013–2018: contributions from meteorology. Atmos. Chem. Phys. Discuss. 1–19. https://doi.org/10.5194/acp-2019- 279. 2019.

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., Hao, J., 2019a. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. https://doi.org/10. 1073/pnas.1907956116. 201907956.

Zhang, R., Wang, G., Guo, S., Zamora, M.L., Ying, Q., Lin, Y., Wang, W., Hu, M., Wang, Y., 2015a. formation of urban fine particulate matter. Chem. Rev. 115, 3803–3855. https://doi.org/10.1021/acs.chemrev.5b00067.

Zhang, Y.-L., Cao, F., 2015. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 5https://doi.org/10.1038/srep14884. 14884.

Zhang, Y., Tang, L., Yu, H., Wang, Z., Sun, Y., Qin, W., Chen, W., Chen, C., Ding, A., Wu, J., Ge, S., Chen, C., Zhou, H.-C., 2015b. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime. Atmos. Environ. 123, 339–349. https://doi.org/10.1016/j.atmosenv.2015.08.017. Part B.

Zhang, Y., Tang, L., Croteau, P.L., Favez, O., Sun, Y., Canagaratna, M.R., Wang, Z., Couvidat, F., Albinet, A., Zhang, H., Sciare, J., Prévôt, A.S.H., Jayne, J.T., Worsnop, D.R., 2017a. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China. Atmos. Chem. Phys. 17, 14501–14517. https://doi.org/10.5194/acp17-14501-2017.

Zhang, Y., Tang, L., Sun, Y., Favez, O., Canonaco, F., Albinet, A., Couvidat, F., Liu, D., Jayne, J.T., Wang, Z., Croteau, P.L., Canagaratna, M.R., Zhou, H.-C., Prévôt, A.S.H., Worsnop, D.R., 2017b. Limited formation of isoprene epoxydiols-derived secondary organic aerosol under NOx-rich environments in Eastern China, Geophys. Res. Lett. 44, 2035–2043. https://doi.org/10.1002/2016GL072368.

Zhang, Y., Favez, O., Petit, J.E., Canonaco, F., Truong, F., Bonnaire, N., Crenn, V., Amodeo, T., Prévôt, A.S.H., Sciare, J., Gros, V., Albinet, A., 2019b. Six-year source apportionment of submicron organic aerosols from near-continuous measurements at SIRTA (Paris area, France). Atmos. Chem. Phys. Discuss. 1–41. https://doi.org/10. 5194/acp-2019-515. 2019.

Zhang, Y.J., Tang, L.L., Wang, Z., Yu, H.X., Sun, Y.L., Liu, D., Qin, W., Canonaco, F., Prévôt, A.S.H., Zhang, H.L., Zhou, H.C., 2015c. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmos. Chem. Phys. 15, 1331–1349. https://doi.org/10.5194/ acp-15-1331-2015.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., Zhang, Q., 2018. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111. https://doi.org/10.5194/acp-18-14095-2018.

Kaynak Göster

354 223

Arşiv
Sayıdaki Diğer Makaleler

Atmospheric visibility variation over global land surface during 1973–2012: Influence of meteorological factors and effect of aerosol, cloud on ABL evolution

Wenjun QU, Xiaoye ZHANG, Ganng FU, Yaqiang WANG

Paleoecological and recent data show a steady temporal evolution of carbon dioxide and temperature

Costas VAROTSOS, Yuri MAZEI, Maria EFSTATHUOU

Emission inventory for on-road traffic fleets in Greater Yangon, Myanmar

Lai Nguyen HUY, Nguyen Thi Kim Oanh, Thiri Tin HTUT, Ohnmar May Tin HLAING

Fine and ultrafine particle number and size measurements from industrial combustion processes: Primary emissions field data

Jan MERTENS, H. LEPAUMIER, P. ROGIERS, D. DESAGHER, L. GOOSSENS, A. DUTERQUE, E. Le CADRE, M. ZAREA, J. BLONDEAU, M. WEBBER

Applicability of the dynamic chamber-capture system (DCS) for estimating the flux of ammonia emission during liquid fertilizer spreading

Min-Suk KIM, Yun-Sik LEE, Jeong-Gyu KIM, Hyun-Gi MIN

Short- and long-term variations, spatial analysis along with cancer health risk assessment associated with 1, 3-butadiene

Mohammad SAKIZADEH

Arsenic in outdoor air particulate matter in China: Tiered study and implications for human exposure potential

Jiawei WANG, Yanjian WAN, Lu CHENG, Ri Wei XIA, Yuanyuan LI, Shunqing XU

Emission characteristics and chemical composition of particulate matter emitted by typical non-road construction machinery

Qijun ZHANG, Lei YANG, Chao MA, Yanjie ZHANG, Lin WU, Hongjun MAO

Rapid improvement in air quality due to aerosol-pollution control during 2012–2018: An evidence observed in Kunshan in the Yangtze River Delta, China

Junmei WU, Yunjiang ZHANG, Ting WANG, Yulin QIAN

CEEMD-subset-OASVR-GRNN for ozone forecasting: Xiamen and Harbin as cases

Suling ZHU, Wang Xiao LING, Naiyu SHI, Mingming LU