Performance studies of planetary boundary layer schemes in WRF-Chem for the Andean region of Southern Ecuador

In tandem with emissions, the dynamics of the Planetary Boundary Layer (PBL) strongly define the concentration of pollutants in the atmosphere. The PBL parameterization schemes of numerical models need to be assessed to identify which one provides the best performance. We simulated the meteorology and transport of pollutants in Cuenca (Andean region of Southern Ecuador, 2400 masl) during September 2014, using the Carbon Bond Mechanism Z (CBMZ) for gaseous species and the Model for Simulation Aerosol Interactions and Chemistry (MOSAIC) for aerosol, from the Weather Research & Forecasting with Chemistry (WRF-Chem) model. Simulations were done under 6 PBL schemes: 1 Yonsei University, YSU; 2 Mellor-Yamada-Janjic, MYJ; 3 Hong and Pang, GFS; 4 Mellor-Yamada Nakanishi and Niino Level 2.5, MYNN2; 5 Mellor-Yamada Nakanishi and Niino Level 3, MYNN3; 6 Asymmetric Convective Model PBL, ACM2. The MYJ (local, 1.5 order of closure) and YSU (nonlocal, first order of closure) schemes showed on average the best skill, with capturing 81% and 78% of shortterm air quality observations. For the MYJ scheme, the inclusion of direct effects between aerosol and meteorology increased the percentage of capturing of short and long-term air quality by 5% and 13% respectively, in comparison with modeling without feedbacks. In the future it is necessary to explore the effects in modeling of direct and indirect feedbacks, in combination with other parameterizations and aerosol-chemical mechanisms.


Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S.T., Savage, N., Seigneur, C., Sokhi, R.S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., Zhang, Y., 2014. Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmos. Chem. Phys. 14, 317–398. 2014.

Banks, R., Tiana-Alsina, J., Baldasano, J.M., Rocadenbosh, F., Papayannis, A., Solomos, S., Tzanis, C., 2016. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res. 176–177, 185–201.

Banks, R., Baldasano, J.M., 2016. Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain. Sci. Total Environ. 572, 98–113.

Boucher, O., 2015. Atmospheric Aerosol. Properties and Climate Impacts. Springer, Netherlands, pp. 311.

CARB, 2003. The Ozone Weekend Effect in California. Staff Report. The Planning and Technical Support Division. The Research Division. Air Resources Board. California Environmental Protection Agency.

Cohen, A., Cavallo, S., Coniglio, M., Brooks, H., 2015. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. Cold season weather environments. J. Weather Forecast. Am. Meteorol. Soc. 30, 591–612.

Cuchiara, G., Li, X., Carvalho, J., Rappenglück, B., 2014. Intercomparison of planetary boundary layer parameterization and its impacts on surface ozone concentrations in the WRF/Chem model for a case study in Houston/Texas. Atmos. Environ. 96, 175–186.

Dickerson, R., Kondragunta, S., Stenchikov, G., Civerolo, K., Doddridge, B., Holben, B., 1997. The impact of aerosol on solar ultraviolet radiation and photochemical smog. Science 278, 827–830.

Dimitrova, R., Silver, Z., Zsedrovits, T., Hocut, C., Leo, L., Di Sabatino, S., Fernando, H., 2016. Assessment of planetary boundary-layer schemes in the weather research and forecasting mesoscale model using MATERHORN field data. Boundary-Layer Meteorol. 176–177, 185–201.

DTC, 2017. Developmental Testbed Center.

EEA, 2011. The Application of Models under the European Union's Air Quality Directive: a Technical Reference Guide. European Environment Agency Technical Report No 10/2011.

EEA, 2016. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. Technical Guidance to Prepare National Emission Inventories. European Environment Agency EEA Report No 21/2016.

EMOV EP, 2015. Informe de la calidad del aire Cuenca – 2014. Empresa Pública de Movilidad, Tránsito y Transporte, pp. 97.

EMOV EP, 2016a. Inventario de emisiones atmosféricas del Cantón Cuenca 2014. Empresa Pública de Movilidad, Tránsito y Transporte, pp. 86.

EMOV EP, 2016b. Informe de la calidad del aire Cuenca – 2015. Empresa Pública de Movilidad, Tránsito y Transporte, pp. 120. informe-de-calidad-del-aire-2015-1.

EMOV EP, 2017. Informe de la calidad del aire Cuenca – 2016. Empresa Pública de Movilidad, Tránsito y Transporte, pp. 103.

Hariprasad, K., Srinivas, C., Bagavath Singh, A., Vijaya Bhaskara Rao, S., Baskaran, R., Venkatraman, B., 2014. Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmos. Res. 145–146, 27–44.

Hong, S., Pan, H., 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev. 124, 2322–2339.

Hong, S., Noh, S., Dudhia, J., 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341.

Jacob, D., 1999. Introduction to Atmospheric Chemistry. Princeton University Press, New Jersey, pp. 266.

Jacobson, M.Z., 1999. Fundamentals of Atmospheric Modeling. Cambridge University Press, Cambridge, pp. 656.

Janjic, Z., 1994. The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122, 927–945.

Janjic, Z., 2001. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. NOAA/NWS/NCEP, pp. 61 Office Note 437.

Molina, M., Molina, T., 2004. Megacities and atmospheric pollution. Critical review. J. Air & Waste Manag. Assoc. 54, 644–680.

Nakanishi, M., Niino, H., 2006. An improved mellor-yamada Level-3 model: its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorol. 119, 397–407.

Nakanishi, M., Niino, H., 2009. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteorol. Soc. Jpn. 87 (5), 895–912. http://

NCEP, 2017. NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research. Computational and Information Systems Laboratory. datasets/ds083.2.

Parra, R., 2017a. Assessment of planetary boundary layer schemes of the WRF-Chem model in the simulation of carbon monoxide dispersion in the urban area of Quito, Ecuador. WIT Trans. Ecol. Environ. 211, 41–50. AIR170041.

Parra, R., 2017b. Efecto Fin de Semana en la Calidad del Aire de la Ciudad de Cuenca – Ecuador. Avances en Ciencias e Ingenierías (accepted).

Pleim, J., 2007. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J. Appl. Meteorol. Climatol. 46, 1383–1395.

Skamarock, W., Klemp, J., Dudhia, J., Barker, D., Duda, M., Huang, X., Wang, W., Powers, J., 2008. A Description of the Advanced Research WRF Version 3. NCAR/TN475+STR. NCAR Technical Note. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research, Boulder, USA.

Stensrud, D., 2007. Parameterization Schemes, Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, New York, pp. 459.

Stull, R., 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic, Dordrecht, The Netherland, pp. 666.

Stull, R., 2000. Meteorology for Scientist and Engineers, second ed. Brooks/Cole Thomson Learning, USA, pp. 502.

Van Aardenne, J., 2002. Uncertainty in Emission Inventories. PhD Thesis. Wageningen University.

Vallero, D., 2008. Fundamentals of Air Pollution, fourth ed. Academic Press, pp. 942.

Warneke, C., de Gouw, A., Edwards, P., Holloway, J., Gilman, J., Kuster, W., Graus, M., Atlas, E., Blake, D., Gentner, D., Goldstein, A., Harley, R., Alvarez, S., Rappenglueck, B., Trainer, M., Parrish, D., 2013. Photochemical aging of volatile organic compounds in the Los Angeles basin: weekday-weekend effect. J. Geophys. Res. Atmos. 118, 5018–5028.

WHO, 2000. Air Quality Guidelines for Europe, second ed. World Health Organization Regional Publications European Series, No. 91, 2000.

WHO, 2006. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global Update 2005. Summary for Risk Assessment. World Health Organization.

WRF, 2017. Weather research and forecasting model.

Zaveri, R., Peters, L., 1999. A new lumped structure photochemical mechanism for largescale applications. J. Geophys. Res. 104 (D23), 30 387 – 30 415.

Zaveri, R., Easter, R., Fast, J., Peters, L., 2008. Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res. 113 (D13204), 1–29. 10.1029/2007JD008782.

Kaynak Göster