Ozone-induced changes in physiological and biochemical traits in Elaeocarpus sylvestrisandMichelia chapensisin South China

The influences of elevated ozone (O3) concentrations on biomass, leaf gas exchange,fluorescence parameters,and leaf physiological and biochemical traits were examined inElaeocarpus sylvestris and Michelia chapensisseedlings under four O3conditions for a growing season in open-top chambers (OTCs). The four O3con-centrations were charcoal-filtered air (CF) (20 ppb), 1 × O3air (40 ppb), 2 × O3air (80 ppb), and 4 × O3air(160 ppb), respectively. The significant decrease in the root/shoot (R/S) ratios of both species indicated thatunder O3stress root biomass was more negatively affected than shoot biomass for both tree seedlings. Along withthe loss of chlorophyll and carotenoid contents, decrease in the superoxide dismutase (SOD), and enhanced levelof lipid peroxidant, the light-saturated net photosynthesis rate (Pnmax)ofE. sylvestris, the effective quantum yieldof PSII photochemistry (Y(II)) and the electron transport rate (ETR) of both species decreased, suggesting thatimpaired photosynthesis occurred. The negative effect of O3on physiological and biochemical parameters wasgreater forM. chapensisthan forE. sylvestris. As the O3concentration increased, the leaf mass per area (LMA) ofE. sylvestrisdecreased, while that ofM. chapensisincreased. Therefore, the increased SOD activity as a hormetic-compensatory response, the increases in LMA and longer vegetative period contributed to the good adaptabilityand high tolerance ofM. chapensis.

Kaynakça

Agathokleous, E., 2018. Environmental hormesis, a fundamental non-monotonic biolo-gical phenomenon with implications in ecotoxicology and environmental safety.Ecotox. Environ. Safe. 148, 1042–1053.

Agathokleous, E., Saitanis, C.J., Wang, X., Watanabe, M., Koike, T., 2015. A review studyon past 40 Years of research on effects of tropospheric O3on belowground structure,functioning, and processes of trees: a linkage with potential ecological implications.Water Air Soil Pollut. 227, 33.

Alonso, R., Elvira, S., Castillo, F.J., Gimieno, B.S., 2001. Interactive effects of ozone anddrought stress on pigments and activities of antioxidantive enzymes inPinus hale-pensis. Plant Cell Environ. 24, 905–916.

Biswas, D.K., Xu, H., Li, Y.G., Sun, J.Z., Wang, X.Z., Han, X.G., Jiang, G.M., 2010.Genotypic differences in leaf biochemical, physiological and growth responses toozone in 20 winter wheat cultivars released over the past 60 years. Global ChangeBiol. 14 (1), 46–59.

Cailleret, M., Ferretti, M., Gessler, A., Rigling, A., Schaub, M., 2018. Ozone effects onEuropean forest growth-Towards an integrative approach. J. Ecol. 106 (4),1377–1389.

Calatayud, A., Iglesias, D.J., Talón, M., Barreno, E., 2003. Effects of 2-month ozone ex-posure in spinach leaves on photosynthesis, antioxidant systems and lipid perox-idation. Plant Physiol. Biochem. (Paris) 41 (9), 839–845.

Calatayud, V., Cerveró, J., Sanz, M.J., 2007. Foliar, physiologial and growth responses offour maple species exposed to ozone. Water Air Soil Pollut. 185 (1–4), 239–254.

Chaudhary, N., Agrawal, S.B., 2015. The role of elevated ozone on growth, yield and seedquality amongst six cultivars of mung bean. Ecotoxicol. Environ. Saf. 111, 286–294.

Chen, J.C., Wang, X.F., 2002. Plant Physiology Experiment. South China University ofTechnology press, Guangzhou.

Conklin, P.L., Barth, C., 2004. Ascorbic acid, a familiar small molecule intertwined in theresponse of plants to ozone, pathogens, and the onset of senescence. Plant CellEnviron. 27, 959–970.

Dai, L., Li, P., Shang, B., Liu, S., Yang, A., Wang, Y., Feng, Z., 2017. Differential responsesof peach (Prunus persica) seedlings to elevated ozone are related with leaf mass perarea, antioxidant enzymes activity rather than stomatal conductance. Environ. Pollut.227, 380–388.

Derwent, R.G., Simmonds, P.G., Manning, A.J., Spain, T.G., 2007. Trends over a 20-yearperiod from 1987 to 2007 in surface ozone at the atmospheric research station, MaceHead, Ireland. Atmos. Environ. 41 (39), 9091–9098.

Díaz-de-Quijano, M., Schaub, M., Bassin, S., Volk, M., Peñuelas, J., 2012. Ozone visiblesymptoms and reduced root biomass in the subalpine speciesPinus uncinataafter twoyears of free-air ozone fumigation. Environ. Pollut. 169, 250–257.

Dizengremel, P., Jolivet, Y., Tuzet, A., Ranieri, A., Le Thiec, D., 2013. Integrative leaf-level ozone phytotoxic ozone dose assessment for forest risk modeling. In: Matyssek,R., Clarke, N., Cudlin, P., Mikkelsen, T.N., Tuovinen, J.P., Wieser, G., Paoletti, E.(Eds.), Climate Change, Air Pollution and Global Challenges. Developments inEnvironmental Sciences 13. Elsevier, Amsterdam, The Netherlands, pp. 267–288.

Dong, X., Zhang, Y., Xue, L., Hu, T., Hu, J., Lu, G., 2016. Growth analysis onElaeocarpussylvestrisseedlings with different densities. Ecological Science 35 (4), 86–90.

Editorial Committee of Flora of China, 1996. The Chinese Academy of Sciences. Flora ofChina. Science Press, Beijing.Feng, Z., Büker, P., Pleijel, H., Emberson, L., Karlsson, P.E., Uddling, J., 2018. A unifyingexplanation for variation in ozone sensitivity among woody plants. Global ChangeBiol. 24 (1), 78–84.

Feng, Z., De Marco, A., Anav, A., Gualtieri, M., Sicard, P., Tian, H., Fornasier, F., Tao, F.,Guo, A., Paoletti, E., 2019. Economic losses due to ozone impacts on human health,forest productivity and crop yield across China. Environ. Int. 131, 104966.

Gao, F., Catalayud, V., Paoletti, E., Hoshika, Y., Feng, Z., 2017. Water stress mitigates thenegative effects of ozone on photosynthesis and biomass in poplar plants. Environ.Pollut. 230, 268–279.

Gimeno, B.S., Bermejo, V., Sanz, J., de la Torre, D., Elvira, S., 2004. Growth response toozone of annual species from Mediterranean pastures. Environ. Pollut. 132, 297–306.

Guan,L.L., Wen, D.Z., 2011. More nitrogen partition in structural proteins and decreasedphotosynthetic nitrogen-use efficiency ofPinus massonianaunderin situ pollutedstress. J. Plant Res. 124 (6), 663–673.

Guangzhou Central Meteorological Observatory, 2015. Available at:http://www.tqyb.com.cn/gz/climaticprediction/bulletin/2015-12-31/466.html, Accessed date: 17August 2019.

Guidi, L., Nali, C., Lorenzini, G., Filippi, F., Soldatini, G.F., 2001. Effect of chronic ozonefumigation on the photosynthetic process of poplar clones showing different sensi-tivity. Environ. Pollut. 113 (3), 245–254.

Häikiö, E., Freiwald, V., Julkunentiitto, R., Beuker, E., Holopainen, T., Oksanen, E., 2009.Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybridaspen (Populus tremula×Populus tremuloides) clones. Tree Physiol. 29 (1), 53–66.

He, X.Y., Fu, S.L., Chen, W., Zhao, T.H., Xu, S., Tuba, Z., 2007. Changes in effects of ozoneexposure on growth, photosynthesis, and respiration ofGinkgo bilobain Shenyangurban area. Photosynthetica 45 (4), 555–561.

Hoshika, Y., Pecori, F., Conese, I., Bardelli, T., Marchi, E., Manning, W.J., Badea, O.,Paoletti, E., 2013. Effects of a three-year exposure to ambient ozone on biomass al-location in poplar using ethylenediurea. Environ. Pollut. 180, 299–303.

Huntingford, C., Oliver, R.J., Mercado, L.M., Sitch, S., 2018. Technical note: a simpletheoretical model framework to describe plant stomatal“sluggishness”in response toelevated ozone concentrations. Biogeosciences 15, 5415–5422.

Inclán, R., Gimeno, B.S., Peñuelas, J., Gerant, D., Quejido, A., 2011. Carbon isotopecomposition, macronutrient concentrations, and carboxylating enzymes in relation tothe growth ofPinus halepensisMill. when subject to ozone stress. Water Air SoilPollut. 214 (1–4), 587–598.

Institute of Soil Sciences, Chinese Academy of Sciences (ISSCAS), 1978. Physical andChemical Analysis Methods of Soils (In Chinese). Shanghai Science Technology Press,Shanghai.

Jin, S., Fan, S., Wang, Z., Nie, H., Yang, G., 2008. The variation characteristics of surfaceozone concentration at Waliguan in Qinghai. China Environ. Sci. 28 (3), 198–202.

Jolivet, Y., Bagard, M., Cabané, M., Vaultier, M.N., Gandin, A., Afif, D., Dizengremel, P.,Le Thiec, D., 2016. Deciphering the ozone-induced changes in cellular processes: aprerequisite for ozone risk assessment at the tree and forest levels. Ann. For. Sci. 73(4), 923–943.

Kangasjärvi, J., Jaspers, P., Kollist, H., 2005. Signalling and cell death in ozone-exposedplants. Plant Cell Environ. 28, 1021–1036.

King, J.S., Kubiske, M.E., Pregitzer, K.S., Hendrey, G.R., McDonald, E.P., Giardina, C.P.,Quinn, V.S., Karnosky, D.F., 2005. Tropospheric O3compromises net primary pro-duction in young stands of trembling aspen, paper birch and sugar maple in responseto elevated atmospheric CO2. New Phytol. 168 (3), 623–636.

Li, H.S., 2000. Experimental Principle and Technology of Plant Physiology andBiochemistry. Higher Education Press, Beijing.

Li, P., Calatayud, V., Gao, F., Uddling, J., Feng, Z.Z., 2016. Differences in ozone sensitivityamong woody species are related to leaf morphology and antioxidant levels. TreePhysiol. 36 (9), 1105–1116.

Li, P., Feng, Z., Catalayud, V., Yuan, X., Xu, Y., Paoletti, E., 2017. A meta-analysis ongrowth, physiological and biochemical responses of woody species to ground-levelozone highlights the role of plant functional types. Plant Cell Environ. 40,2369–2380.

Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of photosyntheticbiomembranes. Methods Enzymol. 148, 350–382.

Manderscheid, R., Jäger, H.J., Kress, L.W., 1992. Effects of ozone on foliar nitrogenmetabolism ofPinus taedaL. and implications for carbohydrate metabolism. NewPhytol. 121 (4), 623–633.

Manninen, S., Huttunen, S., Vanhatalo, M., Pakonen, T., Hämäläinen, A., 2009. Interandintra-specific response to elevated ozone and chamber climate in northern birches.Environ. Pollut. 157 (5), 1679–1688.

Matyssek, R., Bytnerowicz, A., Karlsson, P.E., Paoletti, E., Sanz, M., Schaub, M., Wieser,G., 2007. Promoting the O3flux concept for European forest trees. Environ. Pollut.146 (3), 587–607.

Matyssek, R., Karnosky, D.F., Wieser, G., Percy, K., Oksanen, E., Grams, T.E.E., Kubiske,M., Hanke, D., Pretzsch, H., 2010. Advances in understanding ozone impact on foresttrees: messages from novel phytotron and free-air fumigation studies. Environ. Pollut.158, 1990–2006.

Nali, C., Paoletti, E., Marabottini, R., Della Rocca, G., Lorenzini, G., Paolacci, A.R., Ciaffi,M., Badiani, M., 2004. Ecophysiological and biochemical, strategies of response toozone in Mediterranean evergreen broadleaf species. Atmos. Environ. 38,2247–2257.

Niinemets, Ülo, 1999. Components of leaf dry mass per area - thickness and density - alterleaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144(1), 35–47.

Pleijel, H., Eriksen, A.B., Danielsson, H., Bondesson, N., Selldén, G., 2006. Differentialozone sensitivity in an old and a modern Swedish wheat cultivar—grain yield andquality, leaf chlorophyll and stomatal conductance. Environ. Exp. Bot. 56 (1), 63–71.

Polle, A., Pfirrmann, T., Chakrabarti, S., Rennenberg, H., 1993. The effects of enhancedozone and enhanced carbon dioxide concentrations on biomass, pigments and anti-oxidative enzymes in spruce needles (Picea AbiesL.). Plant Cell Environ. 16, 311–316.

PRDAIR, 2016. Guangdong-Hong Kong-Macao Pearl River Delta regional air qualitymonitoring network: a report of monitoring results in 2015. Report Number:PRDAIR-2015-5. Available at:http://www.epd.gov.hk/epd/sites/default/files/epd/english/resources_pub/publications/files/PRD_2015_report_en-1.pdf.

Temple, P.J., Riechers, G.H., 1995. Nitrogen allocation in ponderosa pine seedlings ex-posed to interacting ozone and drought stresses. New Phytol. 130 (1), 97–104.

Then, Ch, Herbinger, K., Luis, V.C., Heerdt, C., Matyssek, R., Wieser, G., 2009.Photosynthesis, chloroplast pigments, and antioxidants inPinus canariensisunderfree-air ozone fumigation. Environ. Pollut. 157, 392–395.

Vainonen, J.P., Kangasjärvi, J., 2015. Plant signaling in acute ozone exposure. Plant CellEnviron. 38, 240–252.Vingarzan, R., 2004. A review of surface ozone background levels and trends. Atmos.Environ. 38 (21), 3431–3442.

Vollsnes, A.V., Kruse, O.M.O., Eriksen, A.B., Oxaal, U., Futsaether, C.M., 2010. In vivoroot growth dynamics of ozone exposedTrifolium subterraneum. Environ. Exp. Bot. 69(2), 183–188.

Watanabe, M., Hoshika, Y., Inada, N., Koike, T., 2018. Photosynthetic activity in relationto a gradient of leaf nitrogen content within a canopy of Siebold's beech and Japaneseoak saplings under elevated ozone. Sci. Total Environ. 636, 1455–1462.

Watanabe, M., Hoshika, Y., Inada, N., Wang, X., Mao, Q., Koike, T., 2013. Photosynthetictraits of Siebold's beech and oak saplings grown under free air ozone exposure innorthern Japan. Environ. Pollut. 174, 50–56.

Wieser, G., Matyssek, R., 2007. Linking ozone uptake and defense towards a mechanisticrisk assessment for forest trees. New Phytol. 174 (1), 7–9.

Yamaguchi,M., Watanabe, M., Matsumura, H., Kohno, Y., Izuta, T., 2010. Effects of ozoneon nitrogen metabolism in the leaves ofFagus crenataseedlings under different soilnitrogen loads. Trees Struct. Funct. 24 (1), 175–184.

Yan, K., Chen, W., He, X., Zhang, G., Xu, S., 2010. Responses of photosynthesis, lipidperoxidation and antioxidant system in leaves ofQuercus mongolicato elevated O3.Environ. Exp. Bot. 69 (2), 198–204.

Yu, H., Chen, Z., Shang, H., Cao, J., 2017. Physiological and biochemical responses ofMachilus ichangensisRehd. et Wils andTaxus chinensis(Pilger) Rehd. to elevated O3insubtropical China. Environ. Sci. Pollut. Res. 24 (21), 17418–17427.

Yu, H., Wang, J., Liu, J., Wang, F., Liu, J., 2012. Study on the growth rhythm ofMicheliachapensis. J. Anhui Agr. Sci. 40 (6), 3399–3400.

Zhang, W.W., Feng, Z.Z., Wang, X.K., Niu, J.F., 2012. Responses of native broadleavedwoody species to elevated ozone in subtropical China. Environ. Pollut. 163, 149–157.

Kaynak Göster

99 49

Arşiv
Sayıdaki Diğer Makaleler

Exposure to particulate matter and gaseous pollutants during cabcommuting in Nur-Sultan city of Kazakhstan

Mehdi Amouei TORKMAHALLEH, Motahareh NASERİ, Talgat ABDRAKHMANOV, Akzhol ISHANOV, Dhawal SHAH, Philip K. HOPKE, Parya BROOMANDİ, Jong Hun KİM, Prashant Kumar RAI

Source and health risk apportionment for PM2.5collected in Sha-Lu area,Taiwan

Perng-Jy TSAİ, Ming-Yeng LİN, Li-Hao YOUNG, Bing-Fang HWANG, Yu-Cheng CHEN, Hui-Tsung HSU

Investigation of indoor air quality in the ventilated ice rink arena

Ewa BRAGOSZEWSKA, Agnieszka PALMOWSKA, Izabela BİEDRON

Is traffic accident related to air pollution? A case report from an island ofTaihu Lake, China

Wan Yue MENG, Yuhang Lİ, Chunhong LİU, Zhongqiu Lİ

Ozone-induced changes in physiological and biochemical traits in Elaeocarpus sylvestrisandMichelia chapensisin South China

Lan PAN, Xiao-jun ZOU, Xue Lİ Lİ, Hong-yue CHEN, Gan-wen LİE

Spaceborne lidar retrieved composite and speciated aerosol extinction profiles and optical depths over India: A decade of observations

Padmavati KULKARNİ, V. SREEKANTH

Development of a simulation chamber for the evaluation of dermalabsorption of volatile organic compounds

Soraya PONTES-LOPEZ, Julia MORENO, Francesc A. ESTEVE-TURRİLLAS, Sergio ARMENTA

Trace element leaf accumulation in native trees from the remainingSemideciduous Atlantic Forest in Brazil

Marcelle DAFRE-MARTİNELLİ, Marisa DOMİNGOS, Ana Maria G. FİGUEİREDO

Typical industrial sector-based volatile organic compounds source profilesand ozone formation potentials in Zhengzhou, China

Yishun ZHANG, Li CHEN, Qishe Yan, Shijie HAN, Qingyan ZHAO, Liuming YANG, Yonggang LİU, Ruiqin Zhang

Pollutant measurements at near road and urban background sites in NewYork, USA

O.V. RATTİGAN, A.C. CARPENTER, K.L. CİVEROLO, H.D. FELTON