Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions

Traffic-related air pollutant emissions have become a global environmental problem, especially in urban areas. The estimation of pollutant emissions is based on complex models that require the use of detailed travel-activity data, which is often unavailable and in particular, in developing countries. In order to overcome this issue, an alternative multiple-input–multiple-output general regression neural network model, based on basic socioeconomic and transport related indicators, is proposed for the simultaneous prediction of sulphur oxides (SOx), nitrogen oxides (NOx), ammonia (NH3), non-methane volatile organic compounds (NMVOC) and particulate matter emissions at the national level. The best model, created using only six inputs, has MAPE (mean absolute percentage error) values on testing in the range of 12–15% for all studied pollutants, except NMVOC (MAPE = 21%). The obtained predictions for SOx, NH3 and PM10 emissions were in good agreement with the reported emissions (R2 ≥ 0.93), while the predictions for NOx and NMVOC are somewhat less accurate (R2 ≈ 0.85). It can be concluded that the presented ANN approach can offer a simple and relatively accurate alternative method for the estimation of traffic-related air pollutant emissions.

Kaynakça

Abdul-Wahab, S.A., Bakheit, C.S., Al-Alawi, S.M., 2005. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ. Model Softw. 20, 1263–1271. http://dx.doi.org/10.1016/j. envsoft.2004.09.001.

Amato, F., Cassee, F.R., Denier van der Gon, H.A.C., et al., 2014. Urban air quality: the challenge of traffic non-exhaust emissions. J. Hazard Mater 275, 31–36. http://dx. doi.org/10.1016/j.jhazmat.2014.04.053.

An, N., Zhao, W., Wang, J., Shang, D., Zhao, E., 2013. Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy 49, 279–288. http://dx.doi.org/10.1016/j.energy. 2012.10.035.

Antanasijević, D., Pocajt, V., Ristić, M., Perić-Grujić, A., 2015. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks. Energy 84, 816–824. http://dx.doi.org/10.1016/ j.energy.2015.03.060.

Antanasijević, D.Z., Pocajt, V.V., Povrenović, D.S., et al., 2013. PM 10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci. Total Environ. 443, 511–519.

Antanasijević, D.Z., MĐ, Ristić, Perić-Grujić, A.A., Pocajt, V.V., 2014. Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis. Int. J. Greenh. Gas. Control 20, 244–253. http:// dx.doi.org/10.1016/j.ijggc.2013.11.011.

Aussem, A., Hill, D., 2000. Neural-network metamodelling for the prediction of Caulerpa taxifolia development in the Mediterranean sea. Neurocomputing 30, 71–78. http:// dx.doi.org/10.1016/S0925-2312(99)00145-9.

Berkowicz, R., Winther, M., Ketzel, M., 2006. Traffic pollution modelling and emission data. Environ. Model Softw. 21, 454–460. http://dx.doi.org/10.1016/j.envsoft.2004. 06.013.

Borken, J., Steller, H., Meretei, T., Vanhove, F., 2011. Global and country inventory of road passenger and freight transportation: fuel consumption and emissions of air pollutants in the year 2000. Transp. Res. Rec. 2007, 127–136.

Brownstone, D., Golob, T.F., 2009. The impact of residential density on vehicle usage and energy consumption. J. Urban Econ. 65, 91–98. http://dx.doi.org/10.1016/j.jue. 2008.09.002.

Chang, F.-J., Chiang, Y.-M., Chang, L.-C., 2007. Multi-stepahead neural networks for flood forecasting. Hydrol. Sci. J. 52, 114–130. http://dx.doi.org/10.1623/hysj.52.1.114.

Corsmeier, U., Imhof, D., Kohler, M., et al., 2005. Comparison of measured and modelcalculated real-world traffic emissions. Atmos. Environ. 39, 5760–5775. http://dx. doi.org/10.1016/j.atmosenv.2005.06.048.

Davison, L., Ahern, A., Hine, J., 2015. Travel, transport and energy implications of university-related student travel: a case study approach. Transp. Res. Part D. Transp. Environ. 38, 27–40. http://dx.doi.org/10.1016/j.trd.2015.04.028.

Deng, Q., Lu, C., Yu, Y., Li, Y., Sundell, J., Norback, D., 2016. Early life exposure to trafficrelated air pollution and allergic rhinitis in preschool children. Respir. Med. 121, 67–73. http://dx.doi.org/10.1016/j.rmed.2016.10.016.

Eurostat, 2015. Database. http://ec.europa.eu/eurostat/data/database. Gareta, R., Romeo, L.M., Gil, A., 2006. Forecasting of electricity prices with neural networks. Energy Convers. Manag. 47, 1770–1778. http://dx.doi.org/10.1016/j. enconman.2005.10.010.

Ghaedi, A., 2015. Simultaneous prediction of the thermodynamic properties of aqueous solution of ethylene glycol monoethyl ether using artificial neural network. J. Mol. Liq. 207, 327–333. http://dx.doi.org/10.1016/j.molliq.2015.04.015.

Güneş, F., Mahouti, P., Demirel, S., et al., 2015. Reliable reduced cost modeling and design optimization of microwave filters using co-kriging. Int. J. Numer. Model. http://dx.doi.org/10.1002/jnm.

HEI Panel on the Health Effects of Traffic-Related Air Pollution, 2010. Traffic-related Air Pollution: a Critical Review of the Literature on Emissions, Exposure, and Health Effects. HEI Special Report 17. Boston Massachusetts. .

Hong, J., Shen, Q., 2013. Residential density and transportation emissions: examining the connection by addressing spatial autocorrelation and self-selection. Transp. Res. Part D. Transp. Environ. 22, 75–79. http://dx.doi.org/10.1016/j.trd.2013.03.006.

Kalogirou, S.A., 2003. Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci. 29, 515–566. http://dx.doi.org/10. 1016/S0360-1285(03)00058-3.

Kousoulidou, M., Ntziachristos, L., Mellios, G., Samaras, Z., 2008. Road-transport emission projections to 2020 in European urban environments. Atmos. Environ. 42, 7465–7475. http://dx.doi.org/10.1016/j.atmosenv.2008.06.002.

Kumara, R., Aggarwal, R.K., Sharma, J.D., 2013. Energy analysis of a building using artificial neural network: a review. Energy Build. 65, 352–358. http://dx.doi.org/10. 1016/j.enbuild.2013.06.007.

Kuznets, S., 1955. Economic growth and income inequality. Am. Econ. Rev. 45, 1–28.

Lee, W.-Y., House, J.M., Kyong, N.-H., 2004. Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks. Appl. Energy 77, 153–170. http://dx.doi.org/10.1016/S0306-2619(03)00107-7.

Liaquat, A.M., Kalam, M.A., Masjuki, H.H., Jayed, M.H., 2010. Potential emissions reduction in road transport sector using biofuel in developing countries. Atmos. Environ. 44, 3869–3877. http://dx.doi.org/10.1016/j.atmosenv.2010.07.003.

Lim, Y., Moon, Y.-S., Kim, T.-W., 2007. Artificial neural network approach for prediction of ammonia emission from field-applied manure and relative significance assessment of ammonia emission factors. Eur. J. Agron. 26, 425–434. http://dx.doi.org/10. 1016/j.eja.2007.01.008.

Luitel, B., Venayagamoorthy, G.K., 2010. Quantum inspired PSO for the optimization of simultaneous recurrent neural networks as MIMO learning systems. Neural Netw. 23, 583–586. http://dx.doi.org/10.1016/j.neunet.2009.12.009.

Mudgal, A., Gopalakrishnan, K., Hallmark, S., 2011. Prediction of emissions from biodiesel fueled transit buses using artificial neural networks. Int. J. Traffic Transp. Eng. 1, 115–131.

NARSTO, 2005. Improving emission inventories for effective air quality management across North America. In: NARSTO 05–001, . http://www.narsto.org/sites/narsto. org/files/Cover_TitlePage.pdf, Accessed date: 1 January 2015.

Raza, K., Jothiprakash, V., 2014. Multi-output ANN model for prediction of seven meteorological parameters in a weather station. J. Inst. Eng. India Ser. A 95, 221–229. http://dx.doi.org/10.1007/s40030-014-0092-9.

Reyna, J.L., Chester, M.V., Ahn, S., Fraser, A.M., 2015. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories. Environ. Sci. Technol. 49, 369–376. http://dx.doi.org/10.1021/ es5023575.

Sayin, C., Ertunc, H.M., Hosoz, M., et al., 2007. Performance and exhaust emissions of a gasoline engine using artificial neural network. Appl. Therm. Eng. 27, 46–54. http:// dx.doi.org/10.1016/j.applthermaleng.2006.05.016.

Schultz, E.S., Litonjua, A.A., Melén, E., 2017. Effects of long-term exposure to trafficrelated air pollution on lung function in children. Curr. Allergy Asthma Rep. 17, 41. http://dx.doi.org/10.1007/s11882-017-0709-y.

Singh, P., Deo, M., 2007. Suitability of different neural networks in daily flow forecasting. Appl. Soft Comput. 7, 968–978. http://dx.doi.org/10.1016/j.asoc.2006.05.003.

Song, J., Chen, Y., Wei, L., Ma, Y., Tian, N., Huang, S.Y., Dai, Y.M., Zhao, L.H., Kong, Y.Y., 2017. Early-life exposure to air pollutants and adverse pregnancy outcomes: protocol for a prospective cohort study in Beijing. BMJ Open 7, e015895. http://dx.doi.org/ 10.1136/bmjopen-2017-015895. Specht, D.F., 1991. A general regression neural network. IEEE Trans. Neural Netw. 2, 568–576.

Stamenković, L.J., Antanasijević, D.Z., Ristić, M.Đ., et al., 2015. Modeling of ammonia emission in the USA and EU countries using an artificial neural network approach. Environ. Sci. Pollut. Res. 22, 18849–18858. http://dx.doi.org/10.1007/s11356-015- 5075-5.

Stamenković, L.J., Antanasijević, D.Z., Ristić, M.Đ., et al., 2016. Estimation of NMVOC emissions using artificial neural networks and economical and sustainability indicators as inputs. Environ. Sci. Pollut. Res. 23, 10753–10762. http://dx.doi.org/10. 1007/s11356-016-6279-z.

Stamenković, L.J., Antanasijević, D.Z., Ristić, M.Đ., et al., 2017. Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model. Air Qual. Atmos. Heal 10, 15–23. http://dx.doi.org/10.1007/s11869-016- 0403-6.

Uherek, E., Halenka, T., Borken-Kleefeld, J., et al., 2010. Transport impacts on atmosphere and climate: land transport. Atmos. Environ. 44, 4772–4816. http://dx.doi. org/10.1016/j.atmosenv.2010.01.002.

Ward systems group Inc, 2008a. GRNN genetic adaptive learning. http://www. wardsystems.com/manuals/neuroshell2/index.html?idxhowuse.htm. Ward systems group Inc, 2008b. Neuroshell 2 v4.2.

Xia, L., Shao, Y., 2005. Modelling of traffic flow and air pollution emission with application to Hong Kong Island. Environ. Model Softw. 20, 1175–1188. http://dx.doi. org/10.1016/j.envsoft.2004.08.003.

Yang, Y.-S., Chou, J.-H., Huang, W., et al., 2013. An artificial neural network for predicting the friction coefficient of deposited Cr1−xAlxC films. Appl. Soft Comput. 13, 109–115. http://dx.doi.org/10.1016/j.asoc.2012.08.019.

Zhao, B., Zhang, Z., Jin, J., Pan, W.-P., 2010. Modeling mercury speciation in combustion flue gases using support vector machine: prediction and evaluation. J. Hazard Mater 174, 244–250. http://dx.doi.org/10.1016/j.jhazmat.2009.09.042.

Kaynak Göster

1504 1024

Arşiv
Sayıdaki Diğer Makaleler

Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment

Yaghoub HAJİZADEH, Mehdi MOKHTARİ, Maryam FARAJİ, Amir MOHAMMADİ, Sepideh NEMATİ, Reza GHANBARİ, Ali ABDOLAHNEJAD, Reza Fouladi FARD, Ali NİKOONAHAD, Negar JAFARİ, Mohammad MİRİ

Modelling study of the atmospheric composition over Cyprus

Jonilda KUSHTA, Georgios K. GEORGİOU, Yiannis PROESTOS, Theodoros CHRİSTOUDİAS, Jos LELİEVELD

Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka

Chi Sing CHAN, Ranasinghege Sampath Aravinda RANASINGHE, Steven Sai Hang HO, Kin Fai HO, Steve Hung Lam YIM, A.G.T. SUGATHAPALA, Shun Cheng LEE, Wing Tat HUNG, Tien YU HUANG, Hong Qi ZHANG

Greenhouse gas emission accounting at urban level: A case study of the city of Wroclaw (Poland)

Izabela SÓWKA, Yaroslav BEZYK

The relation between columnar and surface aerosol optical properties in a background environment

D. SZCZEPANİK, K.M. Markowicz

Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China

Nan Jiang, Shasha Yin, Yue GUO, Jingyi Lİ, Panru KANG, Ruiqin Zhang, Xiaoyan TANG

A minimum set of ozone precursor volatile organic compounds in an urban environment

Cleyton M. da SİLVA, Luane L. da SİLVA, Sergio M. CORRÊA, Graciela ARBİLLA

Combined membrane photocatalytic ozonation and wet absorption of elemental mercury

Z.S. HUANG, Z.S. WEİ, Y.M. HE, J.L. PEİ, X.L. XİAO, M.R. TANG, S. YU

Low-cost methodology to estimate vehicle emission factors

J. MADRAZO, A. CLAPPİER

Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions

Davor ANTANASİJEVİĆ, Viktor POCAJT, Aleksandra PERİĆ-GRUJİĆ, Mirjana RİSTİĆ