Interpreting continuous in-situ observations of carbon dioxide and carbon monoxide in the urban port area of Rotterdam

Large networks of expensive instruments are often used to independently quantify and monitor urban CO2 emissions with sufficient level of detail. However, many developing regions cannot afford such a monitoring effort. We explore the use of a simple, less costly method to constrain urban emissions using only two measurement sites, one upwind and one downwind of the city of Rotterdam in the Netherlands. This provides an interesting dataset of concentration gradients of multiple combustion tracers over an urban-industrial complex. We find clear emission signals from three source sectors, mainly related to industrial activities in the port and from residential areas. We estimate the anthropogenic CO2 emissions for three footprints from our observations and find them in reasonable agreement with the Dutch National Emission Registration (NER) database after accounting for biogenic fluxes. The large confidence interval for one of the footprints illustrates that the presence of point sources complicates the flux estimates. Additionally, we were able to pinpoint a limitation in the emission database using observed fossil fuel CO:CO2 ratios, although the applicability of this method is limited for the footprint with a large influence from point source emissions. There is also a large variability in the observed ratios per footprint, which indicates that the dominant source type varies over time. Finally, we show that the fossil fuel CO concentration can be used to calculate fossil fuel CO2 if their emission ratio is well-known.

Kaynakça

Andrews, A.E., Kofler, J.D., Trudeau, M.E., Williams, J.C., Neff, D.H., Masarie, K.A., Chao, D.Y., Kitzis, D.R., Novelli, P.C., Zhao, C.L., Dlugokencky, E.J., Lang, P.M., Crotwell, M.J., Fischer, M.L., Parker, M.J., Lee, J.T., Baumann, D.D., Desai, A.R., Stanier, C.O., De Wekker, S.F.J., Wolfe, D.E., Munger, J.W., Tans, P.P., 2014. CO2, CO, and CH4 measurements from tall towers in the NOAA earth system research laboratory's global greenhouse gas reference network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos. Meas. Tech. 7, 647-687.

Bergeron, O., Strachan, I.B., 2011. CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city. Atmos. Environ. 45, 1564-1573.

Bousquet, P., Gaudry, A., Ciais, P., Kazan, V., Monfray, P., Simmonds, P.G., Jennings, S.G., O'Connor, T.C., 1996. Atmospheric CO2 concentration variations recorded at Mace Head, Ireland, from 1992 to 1994. Phys. Chem. Earth 21, 477-481.

Bozhinova, D., Van Der Molen, M.K., Van Der Velde, I.R., Krol, M.C., Van Der Laan, S., Meijer, H.A.J., Peters, W., 2014. Simulating the integrated summertime d14CO2 signature from anthropogenic emissions over Western Europe. Atmos. Chem. Phys. 14, 7273-7290.

Breon, F.M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonne, E., Lopez, M., Schmidt, M., Perrussel, O., Ciais, P., 2015. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements. Atmos. Chem. Phys. 15, 1707-1724.

Brioude, J., Angevine, W.M., Ahmadov, R., Kim, S.W., Evan, S., McKeen, S.A., Hsie, E.Y., Frost, G.J., Neuman, J.A., Pollack, I.B., Peischl, J., Ryerson, T.B., Holloway, J., Brown, S.S., Nowak, J.B., Roberts, J.M., Wofsy, S.C., Santoni, G.W., Oda, T., Trainer, M., 2013. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts. Atmos. Chem. Phys. 13, 3661-3677.

Brioude, J., Petron, G., Frost, G.J., Ahmadov, R., Angevine, W.M., Hsie, E.Y., Kim, S.W., Lee, S.H., McKeen, S.A., Trainer, M., Fehsenfeld, F.C., Holloway, J.S., Peischl, J., Ryerson, T.B., Gurney, K.R., 2012. A new inversion method to calculate emission inventories without a prior at mesoscale: application to the anthropogenic CO2 emission from Houston, Texas. J. Geophys Res. Atmos. 117, 1-15.

Buckley, S.M., Mitchell, M.J., McHale, P.J., Millard, G.D., 2014. Variations in carbon dioxide fluxes within a city landscape: identifying a vehicular influence. Urban Ecosyst. 1-20.

Caulton, D.R., Shepson, P.B., Santoro, R.L., Sparks, J.P., Howarth, R.W., Ingraffea, A.R., Cambaliza, M.O.L., Sweeney, C., Karion, A., Davis, K.J., Stirm, B.H., Montzka, S.A.,Miller, B.R., 2014. Toward a better understanding and quantification of methane emissions from shale gas development. Proc. Natl. Acad. Sci. U. S. A. 111, 6237-6242.

Ciais, P., Dolman, A.J., Bombelli, A., Duren, R., Peregon, A., Rayner, P.J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R.J., Balsamo, G., Bopp, L., Breon, F.M., Broquet, G., Dargaville, R., Battin, T.J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J.G., Cook, R.B., Defries, R., Engelen, R., Gurney, K.R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R.B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.D., Piao, S.L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., Van Der Werf, G., Wickland, D., Williams, M., Zehner, C., 2014. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences 11, 3547-3602.

Ciais, P., Paris, J.D., Marland, G., Peylin, P., Piao, S.L., Levin, I., Pregger, T., Scholz, Y., Friedrich, R., Rivier, L., Houwelling, S., Schulze, E.D., 2010. The European carbon balance. Part 1: fossil fuel emissions. Glob. Chang. Biol. 16, 1395-1408.

Coenen, P.W.H.G., Van der Maas, C.W.M., Zijlema, P.J., Baas, K., Van den Berghe, A.C.W.M., Te Biesebeek, J.D., Brandt, A.T., Geilenkirchen, G., Van der Hoek, K.W., Te Molder, R., Droge, R., Montfoort, J.A., Peek, C.J., Vonk, J., Van € den Wyngaert, I., 2012. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012, RIVM report 680355007, Bilthoven, p. 278

Cooperative Global Atmospheric Data Integration Project, 2015. Multi-laboratory Compilation of Atmospheric Carbon Dioxide Data for the Period 1968-2014; obspack_co2_1_GLOBALVIEWplus_v1.0_2015-07-30. NOAA Earth System Research Laboratory, Global Monitoring Division

Derwent, R.G., Ryall, D.B., Manning, A.J., Simmonds, P.G., O'Doherty, S., Biraud, S., Ciais, P., Ramonet, M., Jennings, S.G., 2002. Continuous observations of carbon dioxide at Mace Head, Ireland from 1995 to 1999 and its net European ecosystem exchange. Atmos. Environ. 36, 2799-2807.

Djuricin, S., Pataki, D.E., Xu, X., 2010. A comparison of tracer methods for quantifying CO2 sources in an urban region. J. Geophys Res. Atmos. 115, 1-13.

Font, A., Grimmond, C.S.B., Kotthaus, S., Morguí, J.A., Stockdale, C., O'Connor, E., Priestman, M., Barratt, B., 2014. Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater London. Environ. Pollut. 196, 98-106.

Gratani, L., Varone, L., 2005. Daily and seasonal variation of CO2 in the city of Rome in relationship with the traffic volume. Atmos. Environ. 39, 2619-2624.

Grimmond, C.S.B., King, T.S., Cropley, F.D., Nowak, D.J., Souch, C., 2002. Local-scale fluxes of carbon dioxide in urban environments: methodological challenges and results from Chicago. Environ. Pollut. 116, S243-S254.

Hendriks, D.M.D., Van Huissteden, J., Dolman, A.J., Van Der Molen, M.K., 2007. The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4, 411-424.

Jacob, D.J., 1999. Introduction to Atmospheric Chemistry. Princeton University Press, Princeton, NJ. Jacobs, A.F.G., Heusinkveld, B.G., Holtslag, A.A.M., 2003. Carbon dioxide and water vapour flux densities over a grassland area in The Netherlands. Int. J. Climatol. 23, 1663-1675.

Jarvi, L., Nordbo, A., Junninen, H., Riikonen, A., Moilanen, J., Nikinmaa, E., Vesala, T., € 2012. Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006-2010. Atmos. Chem. Phys. 12, 8475-8489.

Karion, A., Sweeney, C., Petron, G., Frost, G., Michael Hardesty, R., Ko fler, J., Miller, B.R., Newberger, T., Wolter, S., Banta, R., Brewer, A., Dlugokencky, E., Lang, P., Montzka, S.A., Schnell, R., Tans, P., Trainer, M., Zamora, R., Conley, S., 2013. Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys Res. Lett. 40, 4393-4397.

KNMI, 2007. Determination of the Mixing Layer Height from Ceilometer Backscatter Profiles. https://www.knmi.nl/kennis-en-datacentrum/achtergrond/ determination-of-the-mixing-layer-height-from-ceilometer-backscatterprofiles. access: 29-04-16.

Kort, E.A., Angevine, W.M., Duren, R., Miller, C.E., 2013. Surface observations for monitoring urban fossil fuel CO2 emissions: minimum site location requirements for the Los Angeles megacity. J. Geophys Res. Atmos. 118, 1-8.

Kort, E.A., Frankenberg, C., Miller, C.E., Oda, T., 2012. Space-based observations of megacity carbon dioxide. Geophys Res. Lett. 39, 1-5.

Lauvaux, T., Miles, N.L., Richardson, S.J., Deng, A., Stauffer, D.R., Davis, K.J., Jacobson, G., Rella, C., Calonder, G.P., Decola, P.L., 2013. Urban emissions of CO2 from Davos, Switzerland: the first real-time monitoring system using an atmospheric inversion technique. J. Appl. Meteorol. Climatol. 52, 2654-2668.

Lee, T.R., De Wekker, S.F.J., 2016. Estimating daytime planetary boundary layer heights over a valley from rawinsonde observations at a nearby airport: an application to the page valley in Virginia, United States. J. Appl. Meteorol. Climatol. 55, 791-809.

Levin, I., Hammer, S., Eichelmann, E., Vogel, F.R., 2011. Verification of greenhouse gas emission reductions: the prospect of atmospheric monitoring in polluted areas. Philos. Trans. R. Soc. Lond A 369, 1906-1924.

Levin, I., Karstens, U., 2007. Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations. Tellus B Chem. Phys. Meteorol. 59, 245-250.

Lopez, M., Schmidt, M., Delmotte, M., Colomb, A., Gros, V., Janssen, C., Lehman, S.J., Mondelain, D., Perrussel, O., Ramonet, M., Xueref-Remy, I., Bousquet, P., 2013. CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot study in Paris during winter 2010. Atmos. Chem. Phys. 13, 7343-7358.

Mays, K.L., Shepson, P.B., Stirm, B.H., Karion, A., Sweeney, C., Gurney, K.R., 2009. Aircraft-based measurements of the carbon footprint of Indianapolis. Environ. Sci. Technol. 43, 7816-7823.

McKain, K., Wofsy, S.C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J.R., Stephens, B.B., 2012. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc. Natl. Acad. Sci. U. S. A. 109, 8423-8428.

Miller, J.B., Lehman, S.J., Montzka, S.A., Sweeney, C., Miller, B.R., Karion, A., Wolak, C., Dlugokencky, E.J., Southon, J., Turnbull, J.C., Tans, P.P., 2012. Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2. J. Geophys Res. Atmos. 117, 1-23.

Netherlands PRTR, 2014. Netherlands Pollutant Release & Transfer Register. http:// www.emissieregistratie.nl/. access: March 14.

Peischl, J., Ryerson, T.B., Aikin, K.C., De Gouw, J.A., Gilman, J.B., Holloway, J.S., Lerner, B.M., Nadkarni, R., Neuman, J.A., Nowak, J.B., Trainer, M., Warneke, C., Parrish, D.D., 2015. Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J. Geophys Res. Atmos. 120, 2119-2139.

Picarro, 2015. Datasheet G2401 CO2 þ CO þ CH4 þ H2O CRDS Analyzer. http://www. picarro.com/products_solutions/trace_gas_analyzers/co_co2_ch4_h2o. access: 23-05-16.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1992. Numerical Recipes in C (2nd ed.): the Art of Scientific Computing. Cambridge University Press, New York, NY.

Richardson, S.J., Miles, N.L., Davis, K.J., Crosson, E.R., Rella, C.W., Andrews, A.E., 2012. Field testing of cavity ring-down spectroscopy analyzers measuring carbon dioxide and water vapor. J. Atmos. Ocean. Technol. 29, 397-406.

Schmidt, M., Lopez, M., Yver Kwok, C., Messager, C., Ramonet, M., Wastine, B., Vuillemin, C., Truong, F., Gal, B., Parmentier, E., Cloue, O., Ciais, P., 2014. High-precision quasi-continuous atmospheric greenhouse gas measurements at Trainou tower (Orleans forest, France). Atmos. Meas. Tech. 7, 2283-2296.

Silva, S.J., Arellano, A.F., Worden, H.M., 2013. Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity. Geophys Res. Lett. 40, 4971-4976.

Tohjima, Y., Kubo, M., Minejima, C., Mukai, H., Tanimoto, H., Ganshin, A., Maksyutov, S., Katsumata, K., Machida, T., Kita, K., 2014. Temporal changes in the emissions of CH4 and CO from China estimated from CH4/CO2 and CO/ CO2 correlations observed at Hateruma Island. Atmos. Chem. Phys. 14, 1663-1677.

Turnbull, J.C., Miller, J.B., Lehman, S.J., Tans, P.P., Sparks, R.J., Southon, J., 2006. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys Res. Lett. 33, 1-5.

Turnbull, J.C., Sweeney, C., Karion, A., Newberger, T., Lehman, S.J., Tans, P.P., Davis, K.J., Lauvaux, T., Miles, N.L., Richardson, S.J., Cambaliza, M.O., Shepson, P.B., Gurney, K., Patarasuk, R., Razlivanov, I., 2015. Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: results from the INFLUX experiment. J. Geophys Res. Atmos. 120, 292-312.

Vardag, S.N., Gerbig, C., Janssens-Maenhout, G., Levin, I., 2015. Estimation of continuous anthropogenic CO2: model-based evaluation of 2, CO, d13C(CO2) and D14C(CO2) tracer methods. Atmos. Chem. Phys. 15, 12705-12729.

Vil a-Guerau de Arellano, J., Gioli, B., Miglietta, F., Jonker, H.J.J., Baltink, H.K., Hutjes, R.W.A., Holtslag, A.A.M., 2004. Entrainment process of carbon dioxide in the atmospheric boundary layer. J. Geophys Res. Atmos. 109, 1-15.

Vogel, F.R., Hammer, S., Steinhof, A., Kromer, B., Levin, I., 2010. Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 at a moderately polluted site in southwestern Germany. Tellus B Chem. Phys. Meteorol. 62, 512-520.

Welp, L.R., Keeling, R.F., Weiss, R.F., Paplawsky, W., Heckman, S., 2013. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites. Atmos. Meas. Tech. 6, 1217-1226.

Winderlich, J., Chen, H., Gerbig, C., Seifert, T., Kolle, O., Lavric, J.V., Kaiser, C., Hofer, A., Heimann, M., 2010. Continuous low-maintenance CO € 2/CH4/H2O measurements at the Zotino tall tower observatory (ZOTTO) in central Siberia. Atmos. Meas. Tech. 3, 1113-1128.

Zimnoch, M., Godlowska, J., Necki, J.M., Rozanski, K., 2010. Assessing surface fluxes of CO2 and CH4 in urban environment: a reconnaissance study in Krakow, Southern Poland. Tellus B Chem. Phys. Meteorol. 62, 573-580.

Kaynak Göster

  • ISSN: 1309-1042
  • Yayın Aralığı: Yılda 12 Sayı
  • Başlangıç: 2010

4b 3.2b

Sayıdaki Diğer Makaleler

Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor

Jan E. Szulejko, Pawan KUMAR, Akash DEEP, Ki-Hyun KİM

Spatial and temporal variation of urban air pollutants and their concentrations in relation to meteorological conditions at four sites in Busan, South Korea

Eunhwa JANG, Woogon DO, Geehyeong PARK, Minkyeong KİM, Eunchul YOO

Interpreting continuous in-situ observations of carbon dioxide and carbon monoxide in the urban port area of Rotterdam

I. SUPER, H.A.C. Denier van der Gon, A.J.H. Visschedijk, H. CHEN, M.K. van der Molen, W. Peters

Natural mitigation factor adjustment for re-suspended particulate matter emissions inventory for Bogota, Colombia

Maria Paula Perez-Pena, Barron H. Henderson, Robert Nedbor-Gross, Jorge E. Pachon

Modeling of real time exhaust emissions of passenger cars under heterogeneous traffic conditions

Rohit JAİKUMAR, S.M. Shiva NAGENDRA, R. SİVANANDAN

Chinese vehicle emissions characteristic testing with small sample size: Results and comparison

Tianqi CAİ, Yang ZHANG, Dongqing FANG, Jing SHANG, Yuanxun ZHANG, Yuanhang ZHANG

Evaluation of an urban modelling system against three measurement campaigns in London and Birmingham

Srinivas T.G. Srimath, Ranjeet Sokhi, Ari Karppinen, Vikas SİNGH, Jaakko Kukkonen

Tracking pollutant characteristics during haze events at background site Zhongmu, Henan Province, China

Fei Yu, Qishe Yan, Nan Jiang, Fangcheng Su, Leishi Zhang, Shasha Yin, Yang Li, Ruiqin Zhang, Liangfu Chen