Impact of the Western North Pacific Subtropical High on summer surface ozone in the Korean Peninsula

The Western North Pacific Subtropical High (WNPSH) is a crucial circulation system affecting the East Asian summer monsoon region including the Korean Peninsula, but its linkage to surface ozone (O3) has not been revealed. This study aimed to reveal the relationship between the WNPSH and O3 levels across the Korean Peninsula. For this purpose, a linear regression analysis was performed to assess WNPSH-related variations in observed O3 concentrations at 151 air quality monitoring sites during 2001–2015. The results showed that enhanced WNPSH contributed to the observed increase in O3 levels during summer (June-July-August), with the opposite trend during weakened WNPSH years. We found that anomalous precipitation due to altered circulation patterns mainly contributed to changes in O3 level. This implies that summer O3 in Korea is highly sensitive to interannual atmospheric variability. Our results may be useful for revealing the effects of climate variability on air quality in the East Asian region.

Kaynakça

Anenberg, S.C., West, J.J., Fiore, A.M., Jaffe, D.A., Prather, M.J., Bergmann, D., Cuvelier, K., Dentener, F.J., Duncan, B.N., Gauss, M., Hess, P., Jonson, J.E., Lupu, A., MacKenzie, I.A., Marmer, E., Park, R.J., Sanderson, M.G., Schultz, M., Shindell, D.T., Szopa, S., Vivanco, M.G., Wild, O., Zang, G., 2009. Intercontinental impacts of ozone pollution on human mortality. Environ. Sci. Technol. 43, 6482–6487.

Allen, R.J., Steven, S.C., Norries, J.R., Zender, C.S., 2012. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 485, 350–354.

Akimoto, H., 2003. Global air quality and pollution. Science 302 (5651), 1716–1719. http://dx.doi.org/10.1126/science.1092666.

Akimoto, H., Kurokawa, J., Sudo, K., Nagashima, T., Takemura, T., Klimont, Z., Amann, M., Suzuki, K., 2015. SLCP co-control approach in East Asia: tropospheric ozone reduction strategy by simultaneous reduction of NOx/NMVOC and methane. Atmos. Environ. 122, 588–595.

Avnery, S., Mauzerall, D.L., Liu, J., Horowitz, L.W., 2010. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 45, 2284–2296.

Avnery, S., Mauzerall, D.L., Liu, J., Horowitz, L.W., 2011. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of ozone pollution. Atmos. Environ. 45, 2297–2309.

Bell, M.L., Goldberg, R., Hogrefe, C., Kinney, P.L., Knowlton, K., Lynn, B., Rosenthal, J., Rosenzweig, C., Patz, J.A., 2007. Climate change, ambient ozone, and health in 50 US cities. Clim. Change 82, 61–76.

Ghim, Y.S., Chang, Y.-S., 2000. Characteristics of ground-level ozone distributions in Korea for the period of 1990-1995. J. Geophys. Res. 105, 8877–8890.

Han, J.H., Kim, H.Y., Lee, M.H., Kim, S.Y., Kim, S.W., 2013. Photochemical air pollution of Seoul in the last three decades. J. Korean Soc. Atmos. Environ. 29, 390–406.

http://dx.doi.org/10.5572/KOSAE.2013.29.4.390. (in Korean with English abstract). He, C., Zhou, T.J., 2014. The two interannual variability modes of the Western North Pacific Subtropical High simulated by 28 CMIP5-AMIP models. Clim. Dyn. 43, 2455–2469.

He, C., Zhou, T.J., Lin, A.L., Wu, B., Gu, D.J., Li, C.H., Zheng, B., 2015. Enhanced or weakened Western North Pacific Subtropical High under global warming? Sci. Rep. UK 5. http://dx.doi.org/10.1038/srep16771.

He, Y.J., Uno, I., Wang, Z.F., Pochanart, P., Li, J., Akimoto, H., 2008. Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region. Atmos. Chem. Phys. 8, 7543–7555.

Jeong, J.I., Park, R.J., 2013. Effects of the meteorological variability on regional air quality in East Asia. Atmos. Environ. 69, 46–55.

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M., Potter, G.L., 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1643.

Kim, H., Chung, Y., 2005. On surface O3 associated with long-range transport in the Yellow Sea region. Water Air Soil Pollut. 165, 95–112.

Lee, S.-S., Seo, Y.-W., Ha, K.-J., Jhun, J.-G., 2013. Impact of the Western North Pacific Subtropical High on the East Asian monsoon precipitation and the indian ocean precipitation in the boreal summertime. Asia-Pac. J. Atmos. Sci. 49, 171–182.

Lee, E.J., Yeh, S.W., Jhun, J.G., Moon, B.K., 2006. Seasonal change in anomalous WNPSH associated with the strong East Asian summer monsoon. Geophys. Res. Lett. 33 (21), L21702. http://dx.doi.org/10.1029/2006gl027474.

Li, J., Wang, Z.F., Akimoto, H., Gao, C., Pochanart, P., Wang, X.Q., 2007. Modeling study of ozone seasonal cycle in lower troposphere over east Asia. J. Geophys. Res. Atmos. 112, D22S25. http://dx.doi.org/10.1029/2006JD008209.

Lin, M., Holloway, T., Oki, T., Streets, D.G., Richter, A., 2009. Multi-scale model analysis of boundary layer ozone over East Asia. Atmos. Chem. Phys. 9 (10), 3277–3301.

Lin, J.T., Patten, K.O., Hayhoe, K., Liang, X.Z., Wuebbles, D.J., 2008. Effects of future climate and biogenic emissions changes on surface ozone over the United States and China. J. Appl. Meteorol. Clim. 47, 1888–1909.

Nagashima, T., Ohara, T., Sudo, K., Akimoto, H., 2010. The relative importance of various source regions on East Asian surface ozone. Atmos. Chem. Phys. 10 (22), 11305–11322. http://dx.doi.org/10.5194/acp-10-11305-2010.

Oh, I.B., Kim, Y.K., Hwang, M.K., Kim, C.H., Kim, S., Song, S.K., 2010. Elevated ozone layers over the Seoul Metropolitan Region in Korea: evidence for long-range ozone transport from Eastern China and its contribution to surface concentrations. J. Appl. Meteorol. Clim. 49, 203–220.

Rasmussen, D.J., Fiore, A.M., Naik, V., Horowitz, L.W., McGinnis, S.J., Schultz, M.G., 2012. Surface ozone-temperature relationships in the eastern US: a monthly climatology for evaluating chemistry-climate models. Atmos. Environ. 47, 142–153.

Seo, J., Youn, D., Kim, J.Y., Lee, H., 2014. Extensive spatiotemporal analyses of surface ozone and related meteorological variables in South Korea for the period 1999–2010. Atmos. Chem. Phys. 14, 6395–6415.

Scovronick, N., Dora, C., Fletcher, E., Haines, A., Shindell, D., 2015. Reduce short-lived climate pollutants for multiple benefits. Lancet 386, e28–e31.

Sui, C.H., Chung, P.H., Li, T., 2007. Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett. 34, L11701. http://dx.doi.org/10.1029/2006GL029204.

Teixeira, E., Fischer, G., van Velthuizen, H., van Dingenen, R., Dentener, F., Mills, G., Walter, C., Ewert, F., 2011. Limited potential of crop management for mitigating surface ozone impacts on global food supply. Atmos. Environ. 45, 2569–2576.

van der A, R.J., Eskes, H.J., Boersma, K.F., van Noije, T.P.C., Van Roozendael, M., De Smedt, I., Peters, D.H.M.U., Meijer, E.W., 2008. Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. J. Geophys. Res. Atmos. 113, D04302.

Verstraeten, W.W., Neu, J.L., Williams, J.E., Bowman, K.W., Worden, J.R., Boersma, K.F., 2015. Rapid increases in tropospheric ozone production and export from China. Nat. Geosci. 8 (9), 690. http://dx.doi.org/10.1038/Ngeo2493.

Wang, B., Xiang, B., Lee, J.-Y., 2013. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. Unit. States Am. 110, 2718–2722.

Wang, X., Mauzerall, D.L., 2004. Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos. Environ. 38, 4383–4402.

Wang, Y., Konopka, P., Liu, Y., Chen, H., Miller, R., Ploger, E., Riese, M., Cai, Z., Lü, D., 2012. Tropospheric ozone trend over Beijing from 2002-2010: ozonesonde measurements and modeling analysis. Atmos. Chem. Phys. 12, 8389–8399.

Wie, J., Moon, B.-K., 2016. Seasonal relationship between meteorological conditions and surface ozone in Korea based on an offline chemistry-climate model. Atmos. Pollut. Res. 7, 385–392.

Wilks, D.S., 2011. Statistical Methods in the Atmospheric Sciences, third ed. Academic Press, Oxford, Waltham, MA pp. 67e69. 215e222.

Xiang, B., Wang, B., Yu, W., Xu, S., 2013. How can anomalous western North Pacific Subtropical High intensify in late summer? Geophys. Res. Lett. 40, 2349–2354.

Xie, P.P., Arkin, P.A., 1997. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558.

Zhao, C., Wang, Y.H., Yang, Q., Fu, R., Cunnold, D., Choi, Y., 2010. Impact of East Asian summer monsoon on the air quality over China: view from space. J. Geophys. Res. Atmos. 115, D09301. http://dx.doi.org/10.1029/2009JD012745.

Kaynak Göster