Combined membrane photocatalytic ozonation and wet absorption of elemental mercury

Membrane photocatalytic ozonization coupled with wet absorption offers potential for elemental mercury (Hg0 ) removal. This study reports on a novel FeeTiO2-coated polyvinylidene fluoride (PVDF) wet photocatalytic membrane reactor (WPCMR) for mercury removal in flue gas. Hg0 removal efficiency in the WPCMR reached up to 93.3%. Ozone could enhance mercury oxidation in WPCMR. Wet absorption helps to increases mercury removal efficiency. FeeTiO2 catalyst was synthesized by sol-gel method and characterized by XRD, FTIR, UVeVis, XPS and SEM. XPS analysis confirmed Hg0 oxidation to divalent mercury (Hg (II)). Elemental mercury was oxidized to mercuric oxide followed by wet absorption in the presence of OH free radical and ozone. Wet photocatalytic membrane reactor and photocatalytic membrane reactor (PCMR) of elemental mercury reaction with the FeeTiO2/PVDF catalyst all follow Langmuir-Hinshelwood kinetics.

Kaynakça

Anwar, D.I., Mulyadi, D., 2015. Synthesis of Fe-TiO2 composite as a photocatalyst for degradation of methylene Blue. Procedia Chem. 17, 49e54.

Beltran, F.J., Aguinaco, A., García-Araya, J.F., 2009. Mechanism and kinetics of sul- famethoxazole photocatalytic ozonation in water. Water Res. 43, 1359e1369.

Coronas, J., Santamar, A.J., 1999. Catalytic reactors based on porous ceramic membranes, 51, 377e389.

Driscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J., Pirrone, N., 2013. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967e4983.

Gomes, J.O., Costa, R., Quinta-Ferreira, R.M., Martins, R.C., 2017. Application of ozonation for pharmaceuticals and personal care products removal from water. Sci. Total Environ. 586, 265e283.

Guo, Y., Yan, N., Yang, S., Liu, P., Wang, J., Qu, Z., Jia, J., 2012. Conversion of elemental mercury with a novel membrane catalytic system at low temperature. J. Hazard. Mater. 213e214, 62e70.

Guo, Y., Yan, N., Yang, S., Qu, Z., Wu, Z., Liu, Y., Liu, P., Jia, J., 2011. Conversion of elemental mercury with a novel membrane delivery catalytic oxidation system (MDCOs). Environ. Sci. Technol. 45, 706e711.

Hassani, A., Khataee, A., Karaca, S., Fathinia, M., 2017. Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO 2/ montmorillonite nanocomposite: simultaneous determination and intermediates identificationixture of three pharmaceuticals. J. Environ. Chem. Eng. 5, 1964e1976.

Helble, J.J., 2000. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Process. Technol. 263e288.

Hoffmann, M.R., Choi, W., Bahnemann, D.W., 1995. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69e96.

Jansson, I., Kobayashi, K., Hori, H., Sanchez, B., Ohtani, B., Su arez, S., 2017. Decahedral anatase titania particles immobilized on zeolitic materials for photocatalytic degradation of VOC. Catal. Today 287, 22e29.

Jiang, X., Herricks, T., Xia, Y., 2003. Monodispersed spherical colloids of titania: synthesis, characterization, and crystallization. Adv. Mater. 15, 1205e1209.

Kajama, M.N., Shehu, H., Okon, E., Orakwe, I., Gobina, E., 2016. VOC oxidation in excess of oxygen using flow-through catalytic membrane reactor. Int. J. Hydrogen Energy 41, 16529e16534.

Kamnev, A.A., Mamchenkova, P.V., Dyatlova, Y.A., Tugarova, A.V., 2017. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J. Mol. Struct. 1140, 106e112.

Khuzwayo, Z., Chirwa, E.M.N., 2015. Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir?Hinshelwood approach. J. Hazard. Mater. 300, 459e466.

Kityakarn, S., Worayingyong, A., Suramitr, A., Smith, M.F., 2013. Ce-doped nanoparticles of TiO2: rutile-to-brookite phase transition and evolution of Ce localstructure studied with XRD and XANES. Mater. Chem. Phys. 139, 543e549.

Kumar, K.V., Porkodi, K., Rocha, F., 2008. Langmuir?Hinshelwood kinetics ? A theoretical study. Catal. Commun. 9, 82e84.

Ma, J., He, H., Liu, F., 2015. Effect of Fe on the photocatalytic removal of NO x over visible light responsive Fe/TiO 2 catalysts. Appl. Catal. B Environ. 179, 21e28.

Okpalugo, T.I.T., Papakonstantinou, P., Murphy, H., McLaughlin, J., Brown, N.M.D., 2005. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43, 153e161.

Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., Benson, S.A., 2003. Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82, 89e165.

Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K., 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10, 5951e5964.

Radoi, I.M., Iri Marjanovi, G., Spasojevi, V., Ahrenkiel, P., Mitri, M., Novakovi, T., Aponji, Z., 2017. Superior photocatalytic properties of carbonized PANI/TiO 2 nanocomposites. Appl. Catal. B Environ. 213, 155e166.

Reszczy Ska, J., Grzyb, T., Sobczak, J.W., Lisowski, W., Gazda, M., Ohtani, B., Zaleska, A., 2015. Visible light activity of rare earth metal doped (Er3þ, Yb3þ or Er3þ/Yb3þ) titania photocatalysts. Appl. Catal. B Environ. 163, 40e49.

Roth, J.A., Sullivan, D.E., 1983. Kinetics of ozone decomposition in water. Ozone Sci. Eng. J. Int. Ozone Assoc. 5, 37e49.

Seo, D., Yun, T.S., 2017. NOx removal rate of photocatalytic cementitious materials with TiO2 in wet condition. Build. Environ. 112, 233e240.

Solís, R.R., Rivas, F.J., Mart Nez-Piernas, A., Agüera, A., 2016. Ozonation, photocatalysis and photocatalytic ozonation of diuron. Intermediates identification. Chem. Eng. J. 292, 72e81.

Subramanian, M., Kannan, A., 2008. Effect of dissolved oxygen concentration and light intensity on photocatalytic degradation of phenol, 25, 1300e1308.

Vieira, R.S., Oliveira, M.L.M., Guibal, E., Rodr Guez-Castell, N.E., Beppu, M.M., 2011. Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism. Colloids Surf. A Physicochem. Eng. Asp. 374, 108e114.

Wang, S., Zhang, L., Li, G., Wu, Y., Hao, J., Pirrone, N., Sprovieri, F., Ancora, M.P., 2010. Mercury emission and speciation of coal-fired power plants in China. Atmos. Chem. Phys. Discuss. 10, 1183e1192.

Zhan, F., Li, C., Zeng, G., Tao, S., Xiao, Y., Zhang, X., Zhao, L., Zhang, J., Ma, J., 2013. Experimental study on oxidation of elemental mercury by UV/Fenton system. Chem. Eng. J. 232, 81e88.

Zhang, Y., Tang, Z., Fu, X., Xu, Y., 2010. TiO2 Graphene nanocomposites for gasphase photocatalytic degradation of volatile aromatic pollutant: is TiO2 Graphene truly different from other TiO2 Carbon composite materials? ACS Nano 4, 7303e7314.

Zhao, S., Li, Z., Qu, Z., Yan, N., Huang, W., Chen, W., Xu, H., 2015. Co-benefit of Ag and Mo for the catalytic oxidation of elemental mercury. Fuel 158, 891e897.

Zheng, Q., Tan, S., Feng, H., Cui, X., Zhao, J., Wang, B., 2016. Dynamic equilibrium of reversible reactions and migration of hydrogen atoms mediated by diffusive methanol on rutile TiO2(110)-(1 1) surface. J. Phys. Chem. C 120, 7728e7735.

Zhou, R., Wu, J., Zhang, J., Tian, H., Liang, P., Zeng, T., Lu, P., Ren, J., Huang, T., Zhou, X., Sheng, P., 2017. Photocatalytic oxidation of gas-phase Hg 0 on the exposed reactive facets of BiOI/BiOIO 3 heterostructures. Appl. Catal. B Environ. 204, 465e474.

Zhuang, Z., Yang, Z., Zhou, S., Wang, H., Sun, C., Wu, Z., 2014. Synergistic photocatalytic oxidation and adsorption of elemental mercury by carbon modified titanium dioxide nanotubes under visible light LED irradiation. Chem. Eng. J. 253, 16e23.

Zygarlicke, C.J., 2000. Mercury transformations in coal combustion flue gas. Fuel Process. Technol. 65e66, 289e310.

Kaynak Göster

1264 513

Arşiv
Sayıdaki Diğer Makaleler

Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment

Yaghoub HAJİZADEH, Mehdi MOKHTARİ, Maryam FARAJİ, Amir MOHAMMADİ, Sepideh NEMATİ, Reza GHANBARİ, Ali ABDOLAHNEJAD, Reza Fouladi FARD, Ali NİKOONAHAD, Negar JAFARİ, Mohammad MİRİ

Combined membrane photocatalytic ozonation and wet absorption of elemental mercury

Z.S. HUANG, Z.S. WEİ, Y.M. HE, J.L. PEİ, X.L. XİAO, M.R. TANG, S. YU

Low-cost methodology to estimate vehicle emission factors

J. MADRAZO, A. CLAPPİER

A review on nanoparticle dispersion from vehicular exhaust: Assessment of Indian urban environment

Tandra BANERJEE, R.A. CHRİSTİAN

Modelling study of the atmospheric composition over Cyprus

Jonilda KUSHTA, Georgios K. GEORGİOU, Yiannis PROESTOS, Theodoros CHRİSTOUDİAS, Jos LELİEVELD

Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China

Nan Jiang, Shasha Yin, Yue GUO, Jingyi Lİ, Panru KANG, Ruiqin Zhang, Xiaoyan TANG

The relation between columnar and surface aerosol optical properties in a background environment

D. SZCZEPANİK, K.M. Markowicz

Greenhouse gas emission accounting at urban level: A case study of the city of Wroclaw (Poland)

Izabela SÓWKA, Yaroslav BEZYK

Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions

Davor ANTANASİJEVİĆ, Viktor POCAJT, Aleksandra PERİĆ-GRUJİĆ, Mirjana RİSTİĆ

A minimum set of ozone precursor volatile organic compounds in an urban environment

Cleyton M. da SİLVA, Luane L. da SİLVA, Sergio M. CORRÊA, Graciela ARBİLLA