Characteristics of airborne lead in Hangzhou, southeast China: Concentrations, species, and source contributions based on Pb isotope ratios and synchrotron X-ray fluorescence based factor analysis

PM2.5 samples were simultaneously collected from three representative areas, the central city, industrial area, and clean district of Hangzhou, southeast China in October 2015. Aerosol Pb concentrations, species, and source contributions were investigated using chemical extraction, synchrotron X-ray fluorescence based factor analysis, and stable isotope fingerprinting technology. The results indicated that the airborne lead has been decreasing due to the stringent regulations on the emissions of trace metals from various sources. More than half the lead in PM2.5 were associated with the F1(soluble and exchangeable metals) and F2 (carbonates, oxides and reducible metals) fractions, which are more bioavailable when inhaled by humans. Major contributors of aerosol Pb were coal combustion dust, metallurgic dust, and vehicle exhaust particles. Using a three endmember mixing model based on Pb isotope ratios, coal combustion contributed 45.4 ± 25.2%, industrial emission 28.9 ± 6.9%, and traffic exhaust 25.6 ± 18.3% to aerosol Pb in Hangzhou in October 2015.


Anagnostopoulou, M.A., Day, J.P., 2006. Lead concentrations and isotope ratios in street dust in major cities in Greece in relation to the use of lead in petrol. Sci. Total Environ. 367, 791–799.

Argyropoulos, G., Samara, C., Diapouli, E., Eleftheriadis, K., Papaoikonomou, K., Kungolos, A., 2017. Source apportionment of PM10 and PM2.5 in major urban Greek agglomerations using a hybrid source-receptor modeling process. Sci. Total Environ. 601, 906–917.

Asano, H., Aoyama, T., Mizuno, Y., Shiraishi, Y., 2017. Highly time-resolved atmospheric observations using a continuous fine particulate matter and element monitor. ACS Earth Space Chem. 1, 580–590.

Banerjee, A.D., 2003. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ. Pollut. 123, 95.

Bao, Z., Feng, Y., Jiao, L., Hong, S., Liu, W., 2010. Characterization and source apportionment of PM2.5 and PM10 in Hangzhou. Environ. Monit. China 26, 44–48 (In Chinese).

Batonneau, Y., Sobanska, S., Laureyns, J., Bremard, C., 2006. Confocal microprobe Raman imaging of urban tropospheric aerosol particles. Environ. Sci. Technol. 40, 1300–1306.

Begum, B.A., Hopke, P.K., Zhao, W., 2005. Source identification of fine particles in Washington, DC, by expanded factor analysis modeling. Environ. Sci. Technol. 39, 1129.

Behrooz, R.D., Esmaili-Sari, A., Bahramifar, N., Kaskaoutis, D.G., Saeb, K., Rajaei, F., 2017. Trace-element concentrations and water-soluble ions in size-segregated dustborne and soil samples in Sistan, southeast Iran. Aeolian Res. 25, 87–105.

Berg, T., Steinnes, E., 1997. Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey. Sci. Total Environ. 208, 197–206.

Betha, R., Behera, S.N., Balasubramanian, R., 2014. 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. Environ. Sci. Technol. 48, 4327–4335.

Bi, X., Liang, S., Li, X., 2013. A novel in situ method for sampling urban soil dust: particle size distribution, trace metal concentrations, and stable lead isotopes. Environ. Pollut. 177, 48.

Callender, E., Rice, K.C., 2000. The urban environmental gradient: anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ. Sci. Technol. 34, 232–238.

CCICED, 2015. Policy Research Report on Environment and Development: Management and Institutional Innovation in Green Development 2014. China Environmental Press, Beijing.

Chen, J., Tan, M., Li, Y., Zhang, Y., Lu, W., Tong, Y., Zhang, G., Li, Y., 2005. A lead isotope record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmos. Environ. 39, 1245–1253.

Draxler, R.R., Rolph, G.D., 2010. HYSPLIT (HYbrid Single-particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. NOAA Air Resour. Lab., Silver Spring Md. Available at:

Duzgorenaydin, N.S., 2007. Sources and characteristics of lead pollution in the urban environment of Guangzhou. Sci. Total Environ. 385, 182.

Dye, J.A., Lehmann, J.R., Mcgee, J.K., Winsett, D.W., Ledbetter, A.D., Everitt, J.I., Ghio, A.J., Costa, D.L., 2001. Acute pulmonary toxicity of particulate matter filter extracts in rats: coherence with epidemiologic studies in Utah Valley residents. Environ. Health Perspect. 109 (Suppl. 3), 395–403.

Fang, G.C., Chang, C.N., Chu, C.C., Wu, Y.S., Fu, P.C., Yang, I.L., Chen, M.H., 2003. Characterization of particulate, metallic elements of tsp, PM2.5, and PM2.5-10, aerosols at a farm sampling site in Taiwan, Taichung. Sci. Total Environ. 308, 157–166.

Feng, X.D., Dang, Z., Huang, W.L., Yang, C., 2009. Chemical speciation of fine particle bound trace metals. Int. J. Environ. Sci. Te. 6, 337–346.

Fernández-Espinosa, A.J., Ternero-Rodríguez, M., Barragán de la Rosa, F.J., JiménezSánchez, J.C., 2002. A chemical speciation of trace metals for fine urban particles. Atmos. Environ. 36 (5), 773–780.

Fittschen, U.E.A., Falkenberg, G., 2011. Trends in environmental science using microscopic x-ray fluorescence. Spectrochim. Acta. B. 66, 567–580.

Gavett, S.H., Madison, S.L., Dreher, K.L., Winsett, D.W., Mcgee, J.K., Costa, D.L., 1997. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ. Res. 72, 162–172.

Gioia, S.M.C.L., Babinski, M., Weiss, D.J., Spiro, B., Kerr, A.A.F.S., Verissimo, T.G., Ruiz, I., Prates, J.C.M., 2017. An isotopic study of atmospheric lead in a megacity after phasing out of leaded gasoline. Atmos. Environ. 149, 70–83.

González, L.T., Rodríguez, F.E., Sánchez-Domínguez, M., Cavazos, A., Leyva-Porras, C., Silva-Vidaurri, L.G., Askar, K.A., Kharissov, B.I., Chiu, J.F.V., Barbosa, J.M.A., 2017.

Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: a characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 196, 8–22.

Graney, J.R., Landis, M.S., 2013. Coupling meteorology, metal concentrations, and Pb isotopes for source attribution in archived precipitation samples. Sci. Total Environ. 448, 141.

Harrison, R.M., Bousiotis, D., Mohorjy, A.M., Alkhalaf, A.K., Shamy, M., Alghamdi, M., Khoder, M., Costa, M., 2017. Health risk associated with airborne particulate matter and its components in Jeddah, Saudi Arabia. Sci. Total Environ. 590, 531–539.

Huang, R.J., Zhang, Y., Bozzetti, C., Ho, K.F., Cao, J.J., Han, Y., et al., 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218.

Hu, J.L., Wang, Y.G., Ying, Q., Zhang, H.L., 2014. Spatial and temporal variability of PM2.5 and PM10 over the North China plain and the Yangtze River delta, China. Atmos. Environ. 95, 598–609.

Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., Wu, J., 2012. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 57, 146–152.

Lee, P., Jo, H.Y., Kang, M., Kim, S., 2015. Seasonal variation in trace element concentrations and Pb isotopic composition of airborne particulates during Asian dust and non-Asian dust periods in Daejeon, Korea. Environ. Earth Sci. 74, 3613–3628.

Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., Zein, A.E., Courcot, D., 2017. Contributions of local and regional anthropogenic sources of metals in PM(2.5) at an urban site in northern France. Chemosphere 181, 713–724.

Li, H., Qian, X., Wang, Q., 2013. Heavy metals in atmospheric particulate matter: a comprehensive understanding is needed for monitoring and risk mitigation. Environ. Sci. Technol. 47, 13210–13211.

Li, H., Wu, H., Wang, Q., Yang, M., Li, F., Sun, Y., Qian, X., Wang, J., Wang, C., 2017. Chemical partitioning of fine particle-bound metals on haze-fog and non-haze-fog days in Nanjing, China and its contribution to human health risks. Atmos. Res. 183, 142–150.

Li, S.W., Li, H.B., Luo, J., Li, H.M., Qian, X., Liu, M.M., Bi, J., Cui, X.Y., Ma, L.Q., 2016. Influence of pollution control on lead inhalation bioaccessibility in PM2.5: a case study of 2014 Youth Olympic Games in Nanjing. Environ. Int. 94, 69.

Liu, G., Li, J., Wu, D., Xu, H., 2015. Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology 18, 135–143.

Liu, N.Q., Liu, P.S., Wang, K.J., Chen, D.F., Zhao, J.Y., Xu, Q., 2000. A SXRF method for determining the relative concentration of trace elements in plasma protein affected by cisplatin. Biol. Trace. Elem. Res. 76, 279–284.

Lu, Y., Adomako, E.E., Solaiman, A.R.M., Islam, M.R., Deacon, C., Williams, P.N., Rahman, G.K.M.M., Meharg, A.A., 2009. Baseline soil variation is a major factor in arsenic accumulation in bengal delta paddy rice. Environ. Sci. Technol. 43, 1724. Lu, Y., 2005. Lead isotopes in soil as a tracer of environmental lead pollution in Hangzhou. Quat. Sci. 25, 355–362.

Luo, X.S., Ip, C.C.M., Li, W., Tao, S., Li, X.D., 2014. Spatial-temporal variations, sources, and transport of airborne inhalable metals (PM10) in urban and rural areas of northern China. Atmos. Chem. Phys. Discuss. 14, 13133–13165.

Manoli, E., Voutsa, D., Samara, C., 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in the Ssaloniki, Greece. Atmos. Environ. 36, 949–961.

Millstone, E., 1997. Lead and Public Health: the Dangers for Children. Earthscan. Mohanraj, R., Azeez, P.A., Priscilla, T., 2004. Heavy metals in airborne particulate matter of urban Coimbatore. Arch. Environ. Con. Tox. 47, 162–167.

Ming, L., Jin, L., Li, J., Fu, P., Yang, W., Liu, D., Zhang, G., Wang, Z., Li, X., 2017. PM2.5 in the Yangtze River Delta, China: chemical compositions, seasonal variations, and regional pollution events. Environ. Pollut. 223, 200.

Mukai, H., Furuta, N., FuJll, T., Ambe, Y., Sakamoto, K., Hashlmoto, Y., 1993. Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environ. Sci. Technol. 27, 1347–1356.

Mukai, H., Tanaka, A., Fujii, T., Zeng, Y., Hong, Y., Tang, J., Guo, S., Xue, H., Sun, Z., Zhou, J., Xue, D., Zhao, J., Zhai, G., Gu, J., Zhai, P., 2001. Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environ. Sci. Technol. 35, 1064.

Mukhtar, A., Limbeck, A., 2013. Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: a review. Anal. Chim. Acta 774, 11–25.

Needleman, H., 2004. Lead poisoning. Annu. Rev. Med. 55, 209–222. Nriagu, J.O., Blankson, M.L., Ocran, K., 1996. Childhood lead poisoning in Africa: a growing public health problem. Sci. Total Environ. 181, 93–100.

Pancras, J.P., Landis, M.S., Norris, G.A., Vedantham, R., Dvonch, J.T., 2013. Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data. Sci. Total Environ. 448, 2.

Qi, G., Cao, J., Zhou, L., Yu, B., Wang, Z., 2005. Chemical composition of PM10 in Hangzhou atmosphere. Environ. Chem. 24, 5 (In Chinese).

Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G., Puig, O., 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 35, 6407–6419.

Sakata, K., Sakaguchi, A., Tanimizu, M., Takaku, Y., Yokoyama, Y., Takahashi, Y., 2014. Identification of sources of lead in the atmosphere by chemical speciation using X-ray absorption near-edge structure (XANES) spectroscopy. J. Environ. Sci. 26 (2), 343–352.

Samek, L., Furman, L., Mikrut, M., Regiel-Futyra, A., Macyk, W., Stochel, G., Eldik, R.V., 2017. Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC project. Chemosphere 187, 430–439.

Schleicher, N., Norra, S., Chai, F., Chen, Y., Wang, S., Stüben, D., 2009. Seasonal trend of water-soluble ions at one tsp and five PM2.5 sampling sites in Beijing, China. In: Alliance for Global Sustainability Bookseries, vol. 17. pp. 87–95.

Schneidemesser, E.V., Stone, E.A., Quraishi, T.A., Shafer, M.M., Schauer, J.J., 2010. Toxic metals in the atmosphere in Lahore, Pakistan. Sci. Total Environ. 408, 1640–1648.

Schreck, E., Foucault, Y., Sarret, G., Sobanska, S., Cécillon, L., Castrec-Rouelle, M., Uzu, G., Dumat, C., 2012. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci. Total Environ. 427–428, 253–262.

Sen, I.S., Bizimis, M., Tripathi, S.N., Paul, D., 2016. Lead isotopic fingerprinting of aerosols to characterize the sources of atmospheric lead in an industrial city of India. Atmos. Environ. 129, 27–33.

Sharma, S.K., Mandal, T.K., 2017. Chemical composition of fine mode particulate matter (PM2.5) in an urban area of Delhi, India and its source apportionment. Urban Climate 21, 106–122.

Solé, V.A., Papillon, E., Cotte, M., Walter, P., Susini, J., 2007. A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra. Spectrochim. Acta B. 62, 63–68.

Tagliani, S.M., Carnevale, M., Armiento, G., Montereali, M.R., Nardi, E., Inglessis, M., Sacco, F., Palleschi, S., Rossi, B., Silvestroni, L., Gianfagna, A., 2017. Content, mineral allocation and leaching behavior of heavy metals in urban PM2.5. Atmos. Environ. 153, 47–60.

Tan, M.G., Zhang, G.L., Li, X.L., Zhang, Y.X., Yue, W.S., Chen, J.M., Wang, Y.S., Li, A.G., Li, Y., Zhang, Y.M., Shan, Z.C., 2006. Comprehensive study of lead pollution in Shanghai by multiple techniques. Anal. Chem. 78, 8044–8050.

Wang, W., Liu, X., Zhao, L., Guo, D., Tian, X., Adams, F., 2006. Effectiveness of leaded petrol phase-out in Tianjin, China, based on the aerosol lead concentration and isotope abundance ratio. Sci. Total Environ. 364, 175.

Wu, J., Zhang, H., Shao, L.M., He, P.J., 2013. Nondestructive characterization of the contaminated biodegradable fraction of municipal solid waste using synchrotron radiation-induced micro-x-ray fluorescence. Bioresour. Technol. 132, 239–243.

Yatkin, S., Bayram, A., 2007. Elemental composition and sources of particulate matter in the ambient air of a metropolitan city. Atmos. Res. 85, 126–139.

Yue, W., Li, X., Liu, J., Li, Y., Yu, X., Deng, B., Wan, T., Zhang, G., Huang, Y., He, W., Hua, W., Shao, L., Li, W., Yang, S., 2006. Characterization of PM2.5, in the ambient air of Shanghai city by analyzing individual particles. Sci. Total Environ. 368, 916–925.

Zhai, Y., Liu, X., Chen, H., Xu, B., Zhu, L., Li, C., Zeng, G., 2014. Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha. Sci. Total Environ. 493, 109–115.

Zhao, J., Gao, Z., Tian, Z., Xie, Y., Xin, F., Jiang, R., Kan, H., Song, W., 2013. The biological effects of individual-level PM(2.5) exposure on systemic immunity and inflammatory response in traffic policemen. Occup. Environ. Med. 70, 426–431.

Zheng, J., Tan, M., Shibata, Y., Tanaka, A., Li, Y., Zhang, G., Zhang, Y., Shan, Z., 2004. Characteristics of lead isotope ratios and elemental concentrations in PM fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmos. Environ. 38, 1191–1200.

Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L., Kiang, C.S., Zhang, Y., Cass, G.R., 2005. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos. Environ. 39, 3967–3976.

Zhu, Z., Sun, G., Bi, X., Li, Z., Yu, G., 2013. Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analyses. Atmos. Environ. 77, 9–15.

Kaynak Göster