Assessment of air quality monitoring networks using an ensemble clustering method in the three major metropolitan areas of Mexico

The spatial representativeness of air quality stations is a crucial factor in monitoring networks for designing and applying adequate air quality control measures. If redundant stations, which duplicate air quality data, want to be avoided in order to optimize and reduce the operational cost of air quality networks, robust methodologies must be applied for identifying redundant stations. Therefore, this study proposes the use of a clustering ensemble method to recognize similar and redundant stations by combining three clustering techniques: principle component analysis, hierarchical clustering, and k-means. The result of the ensemble method is analyzed based on additional information, such as emission sources and the meteorological and topographical conditions of the area of interest. This methodology is applied to the ozone (O3) and particulate matter with an aerodynamic diameter of less than or equal to 10 μm (PM10) time series data, acquired from the air pollutant monitoring systems located in the three main metropolitan areas of Mexico: Mexico City (MCMA), Monterrey (MMA), and Guadalajara (GMA). The findings show that the GMA has a well distributed air quality network with the fewest number of similar stations, as well as the MMA, which presents the same stations clusters for PM10 and O3. In contrast, in the MCMA, a cluster of possible redundant stations is found. Results confirm that the clustering ensemble method represents a reliable tool for identifying similar stations.

Kaynakça

Abdul-Wahab, S.A., Bakheit, C.S., Al-Alawi, S.M., 2005. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ. Model. Software. https://doi.org/10.1016/j.envsoft.2004. 09.001.

Abdul-Wahab, S.A., Charabi, Y., Osman, S., Yetilmezsoy, K., Osman, I.I., 2019. Prediction of optimum sampling rates of air quality monitoring stations using hierarchical fuzzy logic control system. Atmos. Pollut. Res. https://doi.org/10.1016/j.apr.2019.08.006.

Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y., Soltanian, H., Herawan, T., 2014. Spatial and temporal clustering of air pollution in Malaysia: a review. In: International Conference on Agriculture, Environment and Biological Sciences. Antalya, Turkey, pp. 67–72.

Aguirre-Salado, A.I., Vaquera-Huerta, H., Aguirre-Salado, C.A., Reyes-Mora, S., Olvera- Cervantes, A.D., Lancho-Romero, G.A., Soubervielle-Montalvo, C., 2017. Developing a hierarchical model for the spatial analysis of PM10 pollution extremes in the Mexico city metropolitan area. Int. J. Environ. Res. Publ. Health. https://doi.org/10. 3390/ijerph14070734.

Aiken, A.C., Salcedo, D., Cubison, M.J., Huffman, J.A., DeCarlo, P.F., Ulbrich, I.M., Docherty, K.S., Sueper, D., Kimmel, J.R., Worsnop, D.R., Trimborn, A., Northway, M., Stone, E.A., Schauer, J.J., Volkamer, R.M., Fortner, E., De Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N.A., Paredes- Miranda, G., Arnott, W.P., Molina, L.T., Sosa, G., Jimenez, J.L., 2009. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: fine particle composition and organic source apportionment. Atmos. Chem. Phys. https://doi.org/10.5194/acp-9-6633-2009.

Ainsworth, E.A., Yendrek, C.R., Sitch, S., Collins, W.J., Emberson, L.D., 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. https://doi.org/10.1146/annurev-arplant-042110- 103829.

Alqurashi, T., Wang, T., 2018. Clustering ensemble method. Int. J. Mach. Learn. Cybern. 1–20. https://doi.org/10.1007/s13042-017-0756-7.

Anderson, T.R., Hawkins, E., Jones, P.D., 2016. CO2, the Greenhouse Effect and Global Warming : from the Pioneering Work of Arrhenius and Callendar to Today ’ S Earth System Models. https://doi.org/10.1016/j.endeavour.2016.07.002. Endeavour.

Anenberg, S.C., Horowitz, L.W., Tong, D.Q., West, J.J., 2010. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. https://doi.org/10. 1289/ehp.0901220.

Ayad, H.G., Kamel, M.S., 2010. On voting-based consensus of cluster ensembles. Pattern Recognit. https://doi.org/10.1080/19439962.2017.1365317.

Benítez-García, S.E., Kanda, I., Wakamatsu, S., Okazaki, Y., Kawano, M., 2014. Analysis of criteria air pollutant trends in three Mexican metropolitan areas. Atmosphere 5, 806–829. https://doi.org/10.3390/atmos5040806.

Bholowalia, P., Kumar, A., 2014. EBK-means: a clustering technique based on elbow method and K-means in WSN. In: International Journal of Computer Applications, https://doi.org/10.5120/18405-9674.

CCME, 2011. Ambient Air Monitoring Protocol for PM2.5 and Ozone. Canada-wide Standatds for Particulate Matter and Ozone.

D'Urso, P., Massari, R., Cappelli, C., De Giovanni, L., 2017. Autoregressive metric-based trimmed fuzzy clustering with an application to PM10 time series. Chemometr. Intell. Lab. Syst. https://doi.org/10.1016/j.chemolab.2016.11.016.

de Foy, B., Caetano, E., Magaña, V., Zitácuaro, A., Cárdenas, B., Retama, A., Ramos, R., Molina, L.T., Molina, M.J., 2005. Mexico City basin wind circulation during the MCMA-2003 field campaign. Atmos. Chem. Phys. https://doi.org/10.5194/acp-5- 2267-2005.

De Foy, B., Fast, J.D., Paech, S.J., Phillips, D., Walters, J.T., Coulter, R.L., Martin, T.J., Pekour, M.S., Shaw, W.J., Kastendeuch, P.P., Marley, N.A., Retama, A., Molina, L.T., 2008. Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis. Atmos. Chem. Phys. https://doi.org/10. 5194/acp-8-1209-2008.

Duyzer, J., van den Hout, D., Zandveld, P., van Ratingen, S., 2015. Representativeness of air quality monitoring networks. Atmos. Environ. https://doi.org/10.1016/j. atmosenv.2014.12.067.

Edgerton, S.A., Bian, X., Doran, J.C., Fast, J.D., Hubbe, J.M., Malone, E.L., Shaw, W.J., Whiteman, C.D., Zhong, S., Arriaga, J.L., Ortiz, E., Ruiz, M., Sosa, G., Vega, E., Limón, T., Guzman, F., Archuleta, J., Bossert, J.E., Elliot, S.M., Lee, J.T., McNair, L.A., Chow, J.C., Watson, J.G., Coulter, R.L., Doskey, P.V., Gaffney, J.S., Marley, N.A., Neff, W., Petty, R., 2011. Particulate air pollution in Mexico city: a collaborative research project. J. Air Waste Manag. Assoc. https://doi.org/10.1080/10473289.1999. 10463915.

Estrada, F., Martínez-Arroyo, A., Fernández-Eguiarte, A., Luyando, E., Gay, C., 2009. Defining climate zones in México City using multivariate analysis. Atmósfera.

Fred, A.L.N., Jain, A.K., 2005. Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.2005.

González, L.T., Longoria-Rodríguez, F.E., Sánchez-Domínguez, M., Leyva-Porras, C., Acuña-Askar, K., Kharissov, B.I., Arizpe-Zapata, A., Alfaro-Barbosa, J.M., 2018. Seasonal variation and chemical composition of particulate matter: a study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS. J. Environ. Sci. https://doi.org/10.1016/j.jes.2018.02.002. (China).

Govender, P., Sivakumar, V., 2020. Application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980–2019). Atmos. Pollut. Res. https://doi.org/10.1016/j.apr.2019.09.009.

Hernández-Paniagua, I., Clemitshaw, K., Mendoza, A., 2017. Observed trends in groundlevel O3 in Monterrey, Mexico, during 1993–2014: comparison with Mexico city and Guadalajara. Atmos. Chem. Phys. 17, 9163–9185. https://doi.org/10.5194/acp-17- 9163-2017.

Ibarra-Berastegi, G., Sáenz, J., Ezcurra, A., Ganzedo, U., Díaz de Argandoña, J., Errasti, I., Fernandez-Ferrero, A., Polanco-Martínez, J., 2009. Assessing spatial variability of SO2 field as detected by an air quality network using Self-Organizing Maps, cluster, and Principal Component Analysis. Atmos. Environ. https://doi.org/10.1016/j. atmosenv.2009.05.010.

IMPLAN, 2014. Plan de desarrollo urbano del municipio de Monterrey 2013 - 2025.

INECC, 2007. Situación ambiental de la Zona Metropolitana del Valle de México. Available online at:. Accessed in 2020. http://www2.inecc.gob.mx/publicaciones2/ libros/268/metro3.html.

INEGI, 2014. Las zonas metropolitanas en México. Censos Económicos 2014.

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning, eighth ed. Springer, New York. https://doi.org/10.1016/j.peva.2007.06. 006. Springer Texts in Statistics.

Kanda, I., Basaldud, R., Magaña, M., Retama, A., Kubo, R., Wakamatsu, S., 2016. Comparison of Ozone Production Regimes between Two Mexican Cities: Guadalajara and Mexico City. https://doi.org/10.3390/atmos7070091. Atmosphere (Basel).

Lever, J., Krzywinski, M., Altman, N., 2017. Points of significance: principal component analysis. Nat. Methods. https://doi.org/10.1038/nmeth.4346.

Lu, W.-Z., He, H.-D., Dong, L., 2011. Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis. Build. Environ. https://doi.org/10.1016/j.buildenv.2010.09.004.

Lyapina, O., Schultz, M.G., Hense, A., 2016. Cluster analysis of European surface ozone observations for evaluation of MACC reanalysis data. Atmos. Chem. Phys. https:// doi.org/10.5194/acp-16-6863-2016.

Marlier, M.E., Jina, A.S., Kinney, P.L., DeFries, R.S., 2016. Extreme air pollution in global megacities. Curr. Clim. Chang. Reports. https://doi.org/10.1007/s40641-016- 0032-z.

Martin, F., Fileni, L., Palomino, I., Vivanco, M.G., Garrido, J.L., 2014. Analysis of the spatial representativeness of rural background monitoring stations in Spain. Atmos. Pollut. Res. https://doi.org/10.5094/APR.2014.087.

Mofarrah, A., Husain, T., 2010. A holistic approach for optimal design of air quality monitoring network expansion in an urban area. Atmos. Environ. https://doi.org/10. 1016/j.atmosenv.2009.07.045.

Molina, L., Molina, M., 2002. Air Quality in the mexico Megacity an Integrated Assessment. Kluwer Academic Publishers.

Molina, L.T., Madronich, S., Gaffney, J.S., Apel, E., De Foy, B., Fast, J., Ferrare, R., Herndon, S., Jimenez, J.L., Lamb, B., Osornio-Vargas, A.R., Russell, P., Schauer, J.J., Stevens, P.S., Volkamer, R., Zavala, M., 2010. An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. https://doi.org/10.5194/acp-10-8697-2010.

Parrish, D.D., Singh, H.B., Molina, L., Madronich, S., 2011. Air quality progress in North American megacities: a review. Atmos. Environ. https://doi.org/10.1016/j. atmosenv.2011.09.039.

Piersanti, A., Vitali, L., Righini, G., Cremona, G., Ciancarella, L., 2015. Spatial representativeness of air quality monitoring stations: a grid model based approach. Atmos. Pollut. Res. https://doi.org/10.1016/j.apr.2015.04.005.

Pires, J.C.M., Sousa, S.I.V., Pereira, M.C., Alvim-Ferraz, M.C.M., Martins, F.G., 2008a. Management of air quality monitoring using principal component and cluster analysis- Part I: SO2 and PM10. Atmos. Environ. https://doi.org/10.1016/j.atmosenv. 2007.10.044.

Pires, J.C.M., Sousa, S.I.V., Pereira, M.C., Alvim-Ferraz, M.C.M., Martins, F.G., 2008b. Management of air quality monitoring using principal component and cluster analysis- Part II: CO, NO2 and O3. Atmos. Environ. https://doi.org/10.1016/j.atmosenv. 2007.10.041.

Pugliese, S.C., Murphy, J.G., Geddes, J.A., Wang, J.M., 2014. The impacts of precursor reduction and meteorology on ground-level ozone in the Greater Toronto Area. Atmos. Chem. Phys. https://doi.org/10.5194/acp-14-8197-2014.

Querol, X., Pey, J., Minguillón, M.C., Pérez, N., Alastuey, A., Viana, M., Moreno, T., Bernabé, R.M., Blanco, S., Cárdenas, B., Vega, E., Sosa, G., Escalona, S., Ruiz, H., Artíñano, B., 2008. PM speciation and sources in Mexico during the MILAGRO-2006 campaign. Atmos. Chem. Phys. https://doi.org/10.5194/acp-8-111-2008.

Ramírez Sánchez, H.U., García, M.D.A., Bejaran, R., Guadalupe, M.E.G., Vázquez, A.W., Toledano, A.C.P., Villasenor, O. de la T., 2009. The spatial-temporal distribution of the atmospheric polluting agents during the period 2000-2005 in the Urban Area of Guadalajara, Jalisco, Mexico. J. Hazard Mater. https://doi.org/10.1016/j.jhazmat. 2008.10.127.

Rencher, A.C., 2002. Methods of Multivariate Analysis, second ed. John Wiley & Sons, New York.

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W., Lin, C.T., 2017. A Review of Clustering Techniques and Developments. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.06.053.

SDS (Secretaria de Desarrollo Sustentable), 2018. Estaciones fijas de monitoreo en el área metropolitana de Monterrey.

SEDEMA (Secretaria del Medio Ambiente de la Ciudad de México), 2018. Principales generadores de emisiones en la CDMX - Partículas. Available online at:. Accessed in 2018. http://www.aire.cdmx.gob.mx/default.php?opc= %27ZKBhnmWkYg==%27.

SEDEMA (Secretaria del Medio Ambiente de la Ciudad de México), 2016. Invetario de Emisiones de la CDMX.

SEMARNAT (Secretaria de Medio Ambiente y Recursos Naturales), 2011. Cuarto almanaque de datos y tendencias de la calidad del aire en 20 ciudades mexicanas (2000- 2009. Available online at:. Accessed in 2018. http://www2.inecc.gob.mx/ publicaciones/libros/652/guadalajara.pdf.

SEMARNAT (Secretaria de Medio Ambiente y Recursos Naturales), 2010. Programa para Mejorar la Calidad del Aire, Jalisco 2011-2020. Shi, P., 2014. Cluster Analysis for daily patterns of SO2 and NO2 measured by the DOAS system in xiamen. Aerosol Air Qual. Res. https://doi.org/10.4209/aaqr.2013.05. 0160.

Siddiqui, K., 2013. Heuristics for sample size determination in multivariate statistical techniques. World Appl. Sci. J. https://doi.org/10.5829/idosi.wasj.2013.27.02.889.

SIMAT (Sistema de Monitoreo Atmosférico de la Ciudad de México), 2018. Normatividad. Available online at:. Accessed in 2018. http://www.aire.cdmx.gob.mx/default.php? opc=%27ZaBhnmI=&dc=%27Yw==.

Singh, A., Yadav, A., Rana, A., 2013. K-means with three different distance metrics. Int. J. Comput. Appl. https://doi.org/10.5120/11430-6785.

Soares, J., Makar, P.A., Aklilu, Y., Akingunola, A., 2018. The use of hierarchical clustering for the design of optimized monitoring networks. Atmos. Chem. Phys. https://doi. org/10.5194/acp-18-6543-2018.

Sofia, D., Lotrecchiano, N., Giuliano, A., Barletta, D., Poletto, M., 2019. Optimization of number and location of sampling points of an air quality monitoring network in an urban contest. Chem. Eng. Trans. https://doi.org/10.3303/CET1974047.

Stone, E.A., Snyder, D.C., Sheesley, R.J., Sullivan, A.P., Weber, R.J., Schauer, J.J., 2008. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006. Atmos. Chem. Phys. https://doi.org/10.5194/acp-8-1249-2008.

UN (United Nations, 2016. The World's Cities in 2016: Data Booklet., Economic and Social Affair. https://doi.org/10.18356/8519891f-en.

Vega, E., Eidels, S., Ruiz, H., López-Veneroni, D., Sosa, G., Gonzalez, E., Gasca, J., Mora, V., Reyes, E., Sánchez-Reyna, G., Villaseñor, R., Chow, J.C., Watson, J.G., Edgerton, S.A., 2010. Particulate air pollution in Mexico city: a detailed view. Aerosol Air Qual. Res. https://doi.org/10.4209/aaqr.2009.06.0042.

Vega, E., Lowenthal, D., Ruiz, H., Reyes, E., Watson, J.G., Chow, J.C., Viana, M., Querol, X., Alastuey, A., 2009. Fine particle receptor modeling in the atmosphere of Mexico City. J. Air Waste Manag. Assoc. https://doi.org/10.3155/1047-3289.59.12.1417.

Wang, W., 2008. Some fundamental issues in ensemble methods. In: Proceedings of the International Joint Conference on Neural Networks, https://doi.org/10.1109/IJCNN. 2008.4634108.

WHO (World Health Organization), 2016. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. World Health Organization. https://apps.who.int/ iris/handle/10665/250141.

WHO (World Health Organization), 2013. Health effects of particulate matter: policy implications for countries in eastern europe, caucasus and central asia. J. Korean Med. Assoc. https://doi.org/10.5124/jkma.2007.50.2.175.

Wilks, D.S., 2006. Statistical Methods in the Atmospheric Sciences, second ed. Elsevierhttps://doi.org/10.1002/met.16.

Xu, D., Tian, Y., 2015. A comprehensive survey of clustering algorithms. Ann. Data Sci. https://doi.org/10.1007/s40745-015-0040-1.

Yatkin, S., Gerboles, M., Belis, C.A., Karagulian, F., Lagler, F., Barbiere, M., Borowiak, A., 2020. Representativeness of an air quality monitoring station for PM2.5 and source apportionment over a small urban domain. Atmos. Pollut. Res. https://doi.org/10. 1016/j.apr.2019.10.004.

Zhao, L., Xie, Y., Wang, J., Xu, X., 2015. A performance assessment and adjustment program for air quality monitoring networks in Shanghai. Atmos. Environ. https:// doi.org/10.1016/j.atmosenv.2015.09.069.

Zhou, Z.H., Tang, W., 2006. Clusterer Ensemble. Knowledge-Based Syst. https://doi.org/ 10.1016/j.knosys.2005.11.003.

Kaynak Göster

352 222

Arşiv
Sayıdaki Diğer Makaleler

Vertical distribution of particulate matter, black carbon and ultra-fine particles in Stuttgart, Germany

A. SAMAD, U. VOGT, A. PANTA, D. UPRETY

Dynamic three-dimensional distribution of traffic pollutant at urban viaduct with the governance strategy

Ming CAI, Yao HUANG, Zhanyong WANG

Black carbon aerosols over a high altitude station, Mahabaleshwar: Radiative forcing and source apportionment

M.P. RAJU, P.D. SAFAI, S.M. SONBAWNE, P.S. BUCHUNDE, G. PANDITHURAI, K.K. DANI

Assessment of air quality monitoring networks using an ensemble clustering method in the three major metropolitan areas of Mexico

Tobias STOLZ, Mar a E. HUERTAS, Alberto MENDOZA

Acidity and inorganic ion formation in PM2.5 based on continuous online observations in a South China megacity

Lingyan WU, Yu jiao WANG, Jianhe Gaiping Zhiqiang Shuguang Lei Shouping Likun Huihui Xiaojing HU ZHANG SHEN LI WANG ZHANG CHENG ZHANG XIA, Gen ZHANG

Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin, Iran

Hamid GHOLAMI, Aliakbar MOHAMADIFAR, Armin SOROOSHIAN, John D. JANSEN

Analysis of long-term (2005–2018) trends in tropospheric NO2 percentiles over Northeast Asia

Gyo-Hwang CHOO, Jeonghyeon SEO, Jongmin YOON, Deok-Rae KIM, Dong-Won LEE

Occurrence, sources and seasonal variation of PM2.5 carbonaceous aerosols in a water level fluctuation zone in the Three Gorges Reservoir, China

Xi WANG, Fengwen WANG, Ting FENG, Siyuan ZHANG, Zhigang GUO, Peili LUA, Li LIU, Fumo YANG, Jiaxin LIU, Neil L. ROSE

Quantifying the effects of vehicle technical performance and electricity carbon intensity on greenhouse gas emissions from electric light truck: A case study of China

Jun LI, Jian bin YANG

An LSTM-based aggregated model for air pollution forecasting

Yue-Shan CHANG, Hsin-Ta CHIAO, Satheesh ABIMANNAN, Yo-Ping HUANG, Yi-Ting TSAI, Kuan-Ming LIN