Assessing human exposure to PM10-bound polycyclic aromatic hydrocarbons during fireworks displays

The “Loy Krathong” festival is a major annual Thai event that includes firework displays. It takes place on the evening of the full moon in the 12th month of the traditional Thai lunar calendar. Since fireworks are widely considered a major source of PAHs, it is considered reasonable to expect a significant increase in PAH levels during this event. The overall PAH profile at the six air quality observatories operated by the Pollution Control Department (PCD), Ministry of Natural Resources and Environment (MNRE), showed that the Kingdom of Thailand's atmosphere was dominated by 5e6-ring PAHs during the firework display period. A significant increase in SPAHs (153%) was observed during firework displays. A statistical analysis coupled with the application of diagnostic binary PAH ratios was conducted to determine whether the detected increase in PAH congeners during the festival period was due to firework com- bustion or whether it was a coincidental effect caused by vehicular exhausts, long-range atmospheric transportation, photolysis and chemical degradation. The average incremental lifetime cancer risk (ILCR) values of adults and children living in Bangkok as estimated by three different TEQs for ingestion, dermal contact, and inhalation exposure pathways were greatly lesser than the US EPA baseline, further high- lighting that the cancer risk of bonfire night falls into the ‘‘acceptable level’’ range.


Zhang, Y., Yang, B., Gan, J., Liu, C., Shu, X., Shu, J., 2011. Nitration of particle- associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO3 radicals. Atmos. Environ. 45 (15), 2515e2521.

Zhang, Y., Tao, S., 2008. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China. Environ. Pollut. 156 (3), 657e663.

Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D., Sylvestre, S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489e515.

Yu, Y., Guo, H., Liu, Y., Huang, K., Wang, Z., Zhan, X., 2008. Mixed uncertainty analysis of polycyclic aromatic hydrocarbon inhalation and risk assessment in ambient air of Beijing. J. Environ. Sci. 20, 505e512.

Yassaa, N., Meklati, Y., Cecinato, A., Marino, F., 2001. Particulate n-alkanes, n-alka- noic acids and polycyclic aromatic hydrocarbons in the Algiers city area. Atmos. Environ. 35, 1843e1851.

Yang, X., Okada, Y., Tang, N., Matsunaga, S., Tamura, K., Lin, J., Kameda, T., Toriba, A., Hayakawa, K., 2007. Long-range transport of polycyclic aromatic hydrocarbons from China to Japan. Atmos. Environ. 41, 2710e2718.

Yang, H.H., Lai, O.S., Hsieh, T.L., Hsueh, J.H., Chi, W.T., 2002. Profiles of PAH emission from steel and iron industries. Chemosphere 48 (10), 1061e1074.

Wu, Y., Yang, L., Zheng, X., Zhang, S.J., Song, S.J., Li, J.Q., Hao, J.M., 2014b. Charac- terization and source apportionment of particulate PAHs in the roadside environment in Beijing. Sci. Total Environ. 470e471, 76e83.

Wu, D., Wang, Z.S., Chen, J.H., Kong, S.F., Fu, X., Deng, H.B., Shao, G.F., Wu, G., 2014a. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: implication for PAH control at industrial agglomer- ation regions, China. Atmos. Res. 149, 217e229.

Wilford, B., Shoeib, M., Harner, T., Zhu, J., Jones, K., 2005. Polybrominated diphenyl ethers in indoor dust in Ottawa, Canada: implications for sources and exposure. Environ. Sci. Technol. 39, 7027e7035.

Wickramasinghe, P.A., Karunaratne, P.G.G.D., Sivakanesan, R., 2012. PM10-bound polycyclic aromatic hydrocarbons: biological indicators, lung cancer risk of realistic receptors and ‘source-exposure-effect relationship’ under different source scenarios. Chemosphere 87 (11), 1381e1387.

Watson, J.G., 1984. Overview of receptor model principles. J. Air Pollut. Control Assoc. 34, 619e623.

Wang, W., Huang, M.J., Chan, C.Y., Cheung, K.C., Wong, M.H., 2013. Risk assessment of non-dietary exposure to polycyclic aromatic hydrocarbons (PAHs) via house PM2.5, TSP and dust and the implications from human hair. Atmos. Environ. 73, 204e213.

Wang, W., Huang, M.J., Kang, Y., Wang, H.S., Leung, A.O.W., Cheung, K.C., Wong, M.H., 2011. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci. Total Environ. 409, 4519e4527.

Vassura, I., Venturini, E., Marchetti, S., Piazzalunga, A., Bernardi, E., Fermo, P., Passarini, F., 2014. Markers and influence of open biomass burning on atmo- spheric particulate size and composition during a major bonfire event. Atmos. Environ. 82, 218e225.

U.S. EPA, 2005. Guidelines for Carcinogen Risk Assessment. U.S. Environmental Protection Agency, Washington, DC. EPA/630/P-03/001B.

U.S. EPA, 1998. EPA Quality Assurance Document: Method Compendium, PM2.5 Mass Weighing Laboratory Standard Operating Procedures for the Performance Evaluation Program. United States Environmental Protection Agency Office of Air Quality Planning and Standards, October 1998.

U.S. EPA, 1997. Exposure Factors Handbook. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC. EPA/600/P-95/002Fa, b, c.

U.S. EPA. Risk assessment guidance for superfund, 1991. Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals), vol. 1. OSWER [9285.7e01B. EPA/540/R-92/003].

U.S. Environmental Protection Agency, 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. NC EPA-600/R-93/089. US Environmental Protection Agency, Research Triangle Park.

Tobiszewski, M., Namiesnik, J., 2012. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 162, 110e119.

Tipmanee, D., Deelaman, W., Pongpiachan, S., Schwarzer, K., Sompongchaiyakul, P., 2012. Using polycyclic aromatic hydrocarbons (PAHs) as a chemical proxy to indicate tsunami 2004 backwash in Khao Lak coastal area, Thailand. Nat. Haz- ards Earth Syst. Sci. 12, 1441e1451.

Tham, F.W.Y., Takeda, K., Sakugawa, H., 2008. Polycyclic aromatic hydrocarbons (PAHs) associated with atmospheric particles in Higashi Hiroshima, Japan: in- fluence of meteorological conditions and seasonal variations. Atmos. Res. 88 (3e4), 224e233.

Slezakova, K., Castro, D., Begonha, A., Matos, D.C., Alvim-Ferraz, C.M., Morais, S., Pereira, C.M., 2011. Air pollution from traffic emissions in Oporto, Portugal: health and environmental implications. Microchem. J. 99 (1), 51e59.

Sicre, M.A., Marty, J.C., Saliot, A., Aparicio, X., Grimalt, J., Albaiges, J., 1987. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmos. Environ. 21, 2247e2259.

Shi, G.L., Liu, G.R., Tian, Y.Z., Zhou, X.Y., Peng, X., Feng, Y.C., 2014. Chemical char- acteristic and toxicity assessment of particle associated PAHs for the short-term anthropogenic activity event: during the Chinese New Year's Festival in 2013. Sci. Total Environ. 482e483, 8e14.

SFT, 1999. Guidelines on Risk Assessment of Contaminated Sites. SFT Report 99.06. Norwegian Pollution Control Authority.

Sarkar, S., Khillare, P.S., Jyethi, D.S., Hasan, A., Parween, M., 2010. Chemical specia- tion of respirable suspended particulate matter during a major firework festival in India. J. Hazard. Mater. 184, 321e330.

Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T., 1993. Sources of fine organic aerosol. 2. Non-catalyst and catalyst-equipped automobiles and heavy duty diesel trucks. Environ. Sci. Technol. 27, 636e651.

Riva, G., Pedretti, F.E., Toscano, G., Duca, D., Pizzi, A., 2011. Determination of poly- cyclic aromatic hydrocarbons in domestic pellet stove emissions. Biomass Bioenergy 35 (10), 4261e4267.

Rajput, P., Sarin, M.M., Rengarajan, R., Singh, D., 2011. Atmospheric polycyclic aro- matic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends. Atmos. Environ. 45 (37), 6732e6740.

Pongpiachan, S., Tipmanee, D., Khumsup, C., Kittikoon, I., Hirunyatrakul, P., 2015. Assessing risks to adults and preschool children posed by PM2.5-bound poly- cyclic aromatic hydrocarbons (PAHs) during a biomass burning episode in Northern Thailand. Sci. Total Environ. 508, 435e444.

Pongpiachan, S., Tipmanee, D., Deelaman, W., Muprasit, J., Feldens, P., Schwarzer, K., 2013b. Risk assessment of the presence of polycyclic aromatic hydrocarbons (PAHs) in coastal areas of Thailand affected by the 2004 tsunami. Mar. Pollut. Bull. 76, 370e378.

Pongpiachan, S., Choochuay, C., Hattayanone, M., Kositanont, C., 2013a. Temporal and spatial distribution of particulate carcinogens and mutagens in Bangkok, Thailand. Asian Pac. J. Cancer Prev. 14 (3), 1879e1887.

Pongpiachan, S., Hirunyatrakul, P., Kittikoon, I., Khumsup, C., 2011. Parameters Influencing on Sensitivities of Polycyclic Aromatic Hydrocarbons Measured by Shimadzu GCMS-QP2010 Ultra. Gas Chromatography/Book 3. Intech Open Ac- cess Publisher, ISBN 978-953-51-0298-4.

Pongpiachan, S., Bualert, S., Sompongchaiyakul, P., Kositanont, C., 2009. Factors affecting sensitivity and stability of polycyclic aromatic hydrocarbons. J. Anal. Lett. 42 (13), 2106e2130.

Pongpiachan, S., 2013c. Fingerprint of carcinogenic semi-volatile organic com- pounds (SVOCs) during bonfire night. Asian Pac. J. Cancer Prev. 14 (5), 3243e3254.

Pongpiachan, S., 2013b. Diurnal variation, vertical distribution and source appor- tionment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in chiang- Mai, Thailand. Asian Pac. J. Cancer Prev. 14 (3), 1851e1863.

Pongpiachan, S., 2013a. Vertical distribution and potential risk of particulate poly- cyclic aromatic hydrocarbons in high buildings of Bangkok, Thailand. Asian Pac. J. Cancer Prev. 14 (3), 1865e1877.

Pongpiachan, S., 2006. Source Apportionment of Semi-volatile Organic Compounds in Urban and Rural Air. PhD thesis. University of Birmingham, Birmingham.

Peng, C., Chen, W.P., Liao, X.L., Wang, M.E., Ouyang, Z.Y., Jiao, W.T., 2011. Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ. Pollut. 159, 802e808.

Orecchio, S., 2011. Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos. Environ. 45, 1888e1895.

Olson, D.A., Vedantham, R., Norris, G.A., Brown, S.G., Roberts, P., 2012. Determining source impacts near roadways using wind regression and organic source markers. Atmos. Environ. 47, 261e268.

Okuda, T., Kumata, H., Zakaria, P.M., Naraoka, H., Ishiwatari, R., Takada, H., 2002. Source identification of Malaysian atmospheric polycyclic aromatic hydrocar- bons nearby forest fires using molecular and isotopic compositions. Atmos. Environ. 36 (4), 611e618.

Nielsen, T., 1996. Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmos. Environ. 30 (20), 3481e3490.

Nibset, T.C.I., LaGoy, K.P., 1992. Toxic equivalency factors (TEFs) for polycyclic aro- matic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 16, 290e300.

Matsui, S., 2008. Endocrine disruptors. Encycl. Ecol. 1259e1260.

Massei, M.A., Ollivon, D., Garban, B., Chevreuil, M., 2003. Polycyclic aromatic hy- drocarbons in bulk deposition at a suburban site: assessment by principal component analysis of the influence of meteorological parameters. Atmos. Environ. 37 (22), 3135e3146.

Masclet, P., Bresson, M.A., Mouvier, G., 1987. Polycyclic aromatic hydrocarbons emitted by power stations, and influence of combustion conditions. Fuel 66, 556e562.

Maertens, R.M., Yang, X.F., Zhu, J.P., Gagne, R.W., Douglas, G.R., White, P.A., 2008. Mutagenic and carcinogenic hazards of settled house dust I: polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ. Sci. Technol. 42, 1747e1753.

Lu, T., Huang, Z., Cheung, S.C., Ma, J., 2012. Size distribution of EC, OC and particle- phase PAHs emissions from a diesel engine fueled with three fuels. Sci. Total Environ. 438, 33e41.

Liu, H.H., Yang, H.H., Chou, C.D., Lin, M.H., Chen, H.L., 2010. Risk assessment of gaseous/particulate phase PAH exposure in foundry industry. J. Hazard. Mater. 181, 105e111.

Lin, Y.C., Lee, S.J., Chang-Chien, G.P., Tsai, P.J., 2008. Characterization of PAHs exposure in workplace atmospheres of a sinter plant and health-risk assess- ment for sinter workers. J. Hazard. Mater. 158, 636e643.

Liao, M.C., Chio, P.C., Chen, Y.W., Ju, R.Y., Li, H.W., Cheng, H.Y., Liao, C.H.V., Chen, C.S., Ling, P.M., 2011. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: a preliminary probabilistic assessment. J. Hazard. Mater. 190 (1e3), 150e158.

Li, X., Guo, X., Liu, X., Liu, C., Zhang, S., Yuesi, W., 2009. Distribution and sources of solvent extractable organic compounds in PM2.5 during 2007 Chinese Spring Festival in Beijing. J. Environ. Sci. 21, 142e149.

Li, C.T., Lin, Y.C., Lee, W.J., Tsai, P.J., 2003. Emission of polycyclic aromatic hydro- carbons and their carcinogenic potencies from cooking sources to the urban atmosphere. Environ. Health Perspect. 111, 483e487.

Li, T.C., Mi, H.H., Lee, J.W., You, C.W., Wang, F.Y., 1999. PAH emission from the in- dustrial boilers. J. Hazard. Mater. 69 (1), 1e11.

Li, C.K., Kamens, R.M., 1993. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmos. Environ. 27, 523e532.

Kwok, E.S.C., Atkinson, R., 1995. Estimation of hydroxyl radical reaction rate con- stants for gas-phase organic compounds using a structure-reactivity relation- ship: an update. Atmos. Environ. 29 (14), 1,685e1,695.

Kong, S., Li, X., Li, L., Yin, Y., Chen, K., Yuan, L., Zhang, Y., Shan, Y., Ji, Y., 2015. Vari- ation of polycyclic aromatic hydrocarbons in atmospheric PM2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: insights of source changes, air mass direction and firework particle injection. Sci. Total Environ. 520, 59e72.

Kong, S., Ji, Y., Li, Z., Lu, B., Bai, Z., 2013. Emission and profile characteristic of polycyclic aromatic hydrocarbons in PM 2.5 and PM 10 from stationary sources based on dilution sampling. Atmos. Environ. 77, 155e165.

Khalili, N.R., Scheff, P.A., Holsen, T.M., 1995. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 29, 533e542.

Keyte, I.J., Albinet, A., Harrison, R.M., 2016. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy-and nitro-derivative compounds measured in road tunnel environments. Sci. Total Environ. 566, 1131e1142.

Juhasz, A.L., Tang, W., Smith, E., 2016. Using in vitro bioaccessibility to refine esti- mates of human exposure to PAHs via incidental soil ingestion. Environ. Res. 145, 145e153.

Hoyer, B.P., 2001. Reproductive toxicology: current and future directions. Biochem. Pharmacol. 62 (12), 1557e1564.

Harrad, S., Laurie, L., 2005. Concentrations, sources and temporal trends in atmo- spheric polycyclic aromatic hydrocarbons in a major conurbation. J. Environ. Monit. 7, 722e727.

Gschwend, P.M., Hites, R.A., 1981. Fluxes of polycyclic aromatic hydrocarbons to marine and lacus- trine sediments in the northeastern United States. Geochim. Cosmochim. Acta 45, 2359e2367.

Gogou, A., Stratigakis, N., Kanakidou, M., Stefanou, E.G., 1996. Organic aerosols in Eastern Mediterra- nean: components source reconciliation by using molecular markers and atmospheric back trajectories. Org. Geochem. 25, 79e96.

Galarneau, E., 2008. Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos. Environ. 42, 8139e8149.

Ferreira-Baptista, L., De Miguel, E., 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos. Environ. 39, 4501e4512.

Feng, J., Sun, P., Hu, X., Zhao, W., Wu, M., Fu, J., 2012. The chemical composition and sources of PM2.5 during the 2009 Chinese New Year's holiday in Shanghai. Atmos. Res. 118, 435e444.

Choi, D.S., Ghim, S.Y., Lee, Y.J., Kim, Y.J., Kim, P.Y., 2012. Factors affecting the level and pattern of polycyclic aromatic hydrocarbons (PAHs) at Gosan, Korea during a dust period. J. Hazard. Mater. 227e228, 79e87.

Chiang, K.C., Chio, C.P., Chiang, Y.H., Liao, C.M., 2009. Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J. Hazard. Mater. 166, 676e685.

Chen, S.C., Liao, C.M., 2006. Health risk assessment on human exposed to envi- ronmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total En- viron. 366, 112e123.

Cecinato, A., 1997. Polynuclear aromatic hydrocarbons (PAH), benz(a)pyrene (BaPY) and nitrated-PAH (NPAH) in suspended particulate matter. Ann. Chim. 87, 483e496.

Betha, R., Balasubramanian, R., 2014. PM2.5 emissions from hand-held sparklers: chemical characterization and health risk assessment. Aerosol Air Qual. Res. 14, 1477e1486.

Bacigalupo, C., Hale, B., 2012. Human health risks of Pb and as exposure via con- sumption of home garden vegetables and incidental soil and dust ingestion: a probabilistic screening tool. Sci. Total Environ. 423, 27e38.

Arey, J., Zielinska, B., Atkinson, R., Winer, A.M., Ramdahl, T., Pitts, J.N., 1986. The formation of nitro-PAH from the gas-phase reactions of fluoranthene and pyr- ene with the OH radical in the presence of NOx. Atmos. Environ. 20 (12), 2,339e2,345.

Amodio, M., Caselli, M., Gennaro, G., Tutino, M., 2009. Particulate PAHs in two urban areas of Southern Italy: impact of the sources, meteorological and background conditions on air quality. Environ. Res. 109 (7), 812e820.

Amarillo, A.C., Carreras, H., 2016. Quantifying the influence of meteorological var- iables on particle-bound PAHs in urban environments. Atmos. Pollut. Res. 7 (4), 597e602.

Alam, M.S., Delgado-Saborit, J.M., Stark, C., Harrison, R.M., 2013. Using atmospheric measurements of PAH and quinone compounds at roadside and urban back- ground sites to assess sources and reactivity. Atmos. Environ. 77, 24e35.

Akyüz, M., Çabuk, H., 2009. Meteorological variations of PM2.5/PM10 concentra- tions and particle-associated polycyclic aromatic hydrocarbons in the atmo- spheric environment of Zonguldak, Turkey. J. Hazard. Mater. 170 (1), 13e21.

Akinwunmi, F., Akinhanmi, T.F., Atobatele, Z.A., Adewole, O., Odekunle, K., Arogundade, L.A., Ademuyiwa, O., 2017. Heavy metal burdens of public primary school children related to playground soils and classroom dusts in Ibadan North-West local government area, Nigeria. Environ. Toxicol. Pharmacol. 49, 21e26.

Kaynak Göster

  • ISSN: 1309-1042
  • Yayın Aralığı: Yılda 12 Sayı
  • Başlangıç: 2010

4.7b 3.5b

Sayıdaki Diğer Makaleler

Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China

Junna SHİ, Gang ZHANG, Hailong AN, Weilun YİN, Xinli Xia

Chemical composition and source apportionment of PM2.5 e A case study from one year continuous sampling in the Chang-Zhu-Tan urban agglomeration

Xiangbo Tang, Xiaohong Chen, Yun Tian

An analysis of the spatial distribution of O3 and its precursors during summer in the urban atmosphere of Riyadh, Saudi Arabia

Badr H. Alharbi, Abdulilah K. Alduwais, Abdulrahman H. Alhudhodi

Characteristics and origins of air pollutants and carbonaceous aerosols during wintertime haze episodes at a rural site in the Yangtze River Delta, China

Mengying BAO, Fang CAO, Yunhua CHANG, Yan-Lin Zhang, Yaqi Gao, Xiaoyan Liu, Yuanyuan Zhang, Wenqi Zhang, Tianran Tang, Zufei XU, Shoudong LİU, Xuhui LEE, Jun LI, Gan Zhang

Polycyclic aromatic hydrocarbons in filterable PM2.5 emissions generated from regulated stationary sources in the metropolitan area of Costa Rica

Jorge Herrera MURİLLO, Jose Felix Rojas MARİN, Violeta Mugica ALVAREZ, David Solorzano ARİAS, Víctor Hugo Beita GUERRERO

Commuter exposure to particulate matter for different transportation modes in Xi'an, China

Zhaowen Qiu, Jianhua Song, Xiaoqin Xu, Yaping Luo, Ruini Zhao, Wencai Zhou, Bihai Xiang, Yanzhao Hao

A novel approach for monitoring vertical profiles of boundary-layer pollutants: Utilizing routine news helicopter flights

Erik T. Crosman, Alexander A. Jacques, John D. Horel

Long-term trend analysis of CO in the Yongsan district of Seoul, Korea, between the years 1987 and 2013

Azmatullah Khan, Jan E. Szulejko, M.-S. Bae, Zang Ho Shon, Jong-Ryeul Sohn, J.W. Seo, Ki-Hyun KİM

Assessing human exposure to PM10-bound polycyclic aromatic hydrocarbons during fireworks displays

Siwatt Pongpiachan, Mattanawadee Hattayanone, Oramas Suttinun, Chukkapong Khumsup, Itthipon Kittikoon, Phoosak Hirunyatrakul, Junji CAO

Effect of the interaction between transplants of the epiphytic lichen Pseudevernia furfuracea L. (Zopf) and rainfall on the variation of element concentrations associated with the water-soluble part of atmospheric depositions

Luana GALLO, Anna CORAPI, Carmine Apollaro, Giovanni Vespasiano, Lucio LUCADAMO