ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity

This paper uses ARIMA models for daily temporal analysis of the effect of land surface coverage (LSC) on PM10 concentrations in a high-altitude megacity.Bogota,the capital of Colombia, is the urban center with the greatest population density and third-highest air pollution levels in Latin America. Six automatic monitoring stations were used; they were equipped with measurement instruments for PM10, temperature and solar radiation as well as wind speed and wind direction. The duration of the sampling period was 6 years. The hourly PM10 sampling system included continuous-monitoring equipment that used beta ray attenuation. We analyzed atmospheric stability and the spatial distribution of LSC (vegetated, non-vegetated, impervious and water bodies) before applying the iterative process of Box-Jenkins for ARIMA models. ARIMA analysis indicates greater persistence in PM10 pollution in the presence of increased vegetated LSC (trees and grasslands); persistence decreased in the presence of more impervious LSC (roofs, pavements and footpaths). PM10 persistence is found to be 2 days (48 h). The best distanceto demonstrate these findings is between 50 and 100 m, with respect tothe monitoringstations' physical location. Urban areas with a predominance of vegetated LSC register lower PM10 concentrations than urban areas with a predominance of impervious LSC (average daily difference¼42.7%). This study's findings serve as a reference point for the development of differentiated strategies for air pollution control in line with urban LSC.


Argiriou, A.A., 2007. Use of neural networks for tropospheric ozone time series approximation and forecasting-A review. Atmos. Chem. Phys. Discuss. 7, 5739e5767.

Athanasiadis, I.N., Karatzas, K., Mitkas, P., 2005. Contemporary air quality forecasting methods: a comparative analysis between classification algorithms and statistical methods. In: Fifth International Conference on Urban Air Quality Measurement, ModellingandManagement,March29-31,2005,Valencia, Spain, pp. 1e12.

Avecilla, F., Panebianco, J.E.,Buschiazzo, D.E.,2016. Awind-tunnelstudyonsaltation and PM10 emission from agricultural soils. Aeolian Res. 22, 73e83.

Bach, P.M., Staalesen, S., McCarthy, D.T., Deletic, A., 2015. Revisiting land use classification and spatial aggregation for modelling integrated urban water systems. Landsc. Urban Plann 143, 43e55.

Bathmanabhan, S., Saragur Madanayak, S.N., 2010. Analysis and interpretation of particulate matter - PM10, PM2.5 and PM1 emissions from the heterogeneous traffic near an urban roadway. Atmos. Pollut. Res. 1, 184e194.

Box, G.E.P., Jenkins, G.M., 1970. Time Series Analysis, Forecasting and Control, first ed. Holden-Day, San Francisco.

Carvacho, O.F., Ashbaugh, L.L., Brown, M.S., Flocchini, R.G., 2004. Measurement of PM2.5 Emission Potential from Soil Using the UC Davis Resuspension Test Chamber. Geomorphology 59, 75e80.

Chambers, S.D., Wang, F., Williams, A.G., Xiaodong, D., Zhang, H., Lonati, G., Crawford, J., Griffiths, A.D., Ianniello, A., Allegrini, I., 2015. Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmos. Environ. 107, 233e243.

Chen, X., Pei, T., Zhou, Z., Teng, M., He, L., Luo, M., Liu, X., 2015. Efficiency differences of roadside greenbelts with three configurations in removing coarse particles (PM10): a street scale investigation in Wuhan, China. Urban For. Urban Gree 14, 354e360.

Chow, J.C., Watson, J.G., Mauderly, J.L., Costa, D.L., Wyzga, R.E., Vedal, S., Hidy, G.M., Altshuler, S.L., Marrack, D., Heuss, J.M., Wolff, G.T., Pope, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that connect. Japca J. Air Waste Ma 56, 1368e1380.

Connell, D.P., Withum, J.A., Winter, S.E., Statnick, R.M., Bilonick, R.A., 2005. The Steubenville Comprehensive Air Monitoring Program (SCAMP): analysis of short-term and episodic variations in PM2.5 concentrations using hourly air monitoring data. Japca J. Air Waste Ma 55, 559e573.

Díaz-Robles, L.A., Ortega, J.C., Fu, J.S., Reed, G.D., Chow, J.C., Watson, J.G., MoncadaHerrera, J.A., 2008. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 42, 8331e8340.

Fowler, D., Skiba, U., Nemitz,E., Choubedar, F., Branford, D., Donovan, R.,Rowland,P., 2004. Measuring aerosol and heavy metal deposition on urban woodland and grassusing inventories of 210PB and metal concentrations in soil. WaterAir Soil Pollut. Focus 4, 483e499.

Funk, R., Reuter, H.I., Hoffmann, C., Engel, W., €Ottl, D., 2008. Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surf. Process. Landf. 33, 1851e1863.

Gallagher, M.W., Nemitz, E., Dorsey, J.R., Fowler, D., Sutton, M.A., Flynn, M., Duyzer, J., 2002. Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: influence of surface roughness length on deposition. J. Geophys. Res. D. Atmos.107 (D12,10) http:// issn:0148e0227.

Gifford, F.A., 1976. Turbulent diffusion typing schemes: a review. Nucl. Saf. 17, 68e86.

Gocheva-Ilieva, S.G., Ivanov, A.V., Voynikova, D.S., Boyadzhiev, D.T., 2014. Time series analysis and forecasting for air pollution in small urban area: an SARIMA and factor analysis approach. Stoch. Environ. Res. Risk Assess. 28, 1045e1060.

Gomi s cek, B., Hauck, H., Stopper, S., Preining, O., 2004. Spatial and temporal variations of PM1, PM 2.5, PM 10 and particle number concentration during the AUPHEP e project. Atmos. Environ. 38, 3917e3934.

Hernandez, E., Martín, F., Valero, F., 1992. Statistical forecast models for daily air particulate iron and lead concentrations for Madrid. Spain. Atmos. Environ. Part B Urban Atmos. 26, 107e116.

Hsu, H., Adamkiewicz, G., Houseman, E.A., Spengler, J.D., Levy, J.I., 2014. Using mobile monitoring to characterize roadway and aircraft contributions to ultrafine particle concentrations near a mid-sized airport. Atmos. Environ. 89, 688e695.

Irga, P.J., Burchett, M.D., Torpy, F.R., 2015. Does urban forestry have a quantitative effect on ambient air quality in an urban environment? Atmos. Environ. 120, 173e181.

Islam, M.N., Rahmanb, K.S., Bahar, M.M., Habib, M.A., Andoa, K., Hattoria, N., 2012. Pollution attenuation by roadside greenbelt in and around urban areas. Urban For. Urban Gree 11, 460e464.

Jian, L., Zhao, Y., Zhu, Y., Zhang, M., Bertolatti, D., 2012. An application of ARIMA model to predict submicronparticle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci. Total Environ. 426, 336e345.

Kumar, U., De Ridder, K., 2010. GARCH modelling in association with FFT-ARIMA to forecast ozone episodes. Atmos. Environ. 44, 4252e4265.

Kumar, U., Jain, V.K., 2010. ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch. Environ. Res. Risk Assess. 24, 751e760.

Lee, S., Ho, C., Lee, Y.G., Choi, H., Song, C., 2013. Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul. Korea for the period October 16-20, 2008 Atmos. Environ. 77, 430e439.

Liu, J., Mo, L., Zhu, L., Yang, Y., Liu, J., Qiu, D., Zhang, Z., Liu, J., 2016. Removal efficiencyofparticulate mattersat different underlying surfaces inBeijing. Environ. Sci. Pollut. Res. 23, 408e417.

Liu, P.G., 2009. Simulation of the daily average PM10 concentrations at Ta-Liao with Box-Jenkins time series models and multivariate analysis. Atmos. Environ. 43, 2104e2113.

Ljung, G.M., Box, G.E.P., 1978. On a measure of a lack of fit in time series models. Biometrika 65, 297e303.

Meraz, M., Rodriguez, E., Femat, R., Echeverria, J.C., Alvarez-Ramirez, J., 2015. Statistical persistence of air pollutants (O3, SO 2, NO 2 and PM10) in Mexico City. Phys. A Stat. Mech. Appl. 427, 202e217.

McDonald, A.G., Bealey, W.J., Fowler, D., Dragosits, U., Skiba, U., Smith, R.I., Donovan, R.G., Brett, H.E., Hewitt, C.N., Nemitz, E., 2007. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 41, 8455e8467.

Minguillon, M.C., Querol, X., Baltensperger, U., Prevot, A.S.H., 2012. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution? Sci. Total Environ. 427, 191e202.

Montoya, G.J., Cepeda, W., Eslava, J.A., 2004. Características de la turbulencia y de la estabilidad atmosferica en Bogota. Rev. Acad. Colomb. Cienc. 28, 327e335.

Nelson, G., Maisonet, M., Miyashiro, M., 2005. An Assessment of Health Effects of Ambient Air Pollution in Latin America and the Caribbean, first ed. Pan Americana Health Organization, Washington D.C.

Pasquill, F.,1961. The estimation of the dispersion of windborne material. Meteorol. Mag. 90, 33e49.

Perrino, C., Catrambone, M., Pietrodangelo, A., 2008. Influence of atmospheric stability on the mass concentration and chemical composition of atmospheric particles: a case study in Rome, Italy. Environ. Int. 34, 621e628.

Pope, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that connect. Japca J. Air Waste Ma 56, 709e742.

Reisen, V.A., Sarnaglia, A.J.Q., Reis, N.C., Levy-Leduc, C., Santos, J.M., 2014. Modeling and forecasting daily average PM10 concentrations by a seasonal long-memory model with volatility. Environ. Model. Softw. 51, 286e295.

Sarmiento, R., Hernandez, L.J., Medina, E.K., Rodríguez, N., Reyes, J., 2015. Respiratory symptoms associated with air pollution in five localities of Bogota, 20082011, a dynamic cohort study. Biomedica 35, 167e176.

Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat. 6, 461e464.

Seinfeld, J., Pandis, S., 2016. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, third ed. John Wiley & Sons, New Jersey.

Soni, K., Kapoor, S., Parmar, K.S., Kaskaoutis, D.G., 2014. Statistical analysis of aerosols over the Gangetic-Himalayan region using ARIMA model based on long-term MODIS observations. Atmos. Res. 149, 174e192.

Soto, D.F.P., Mejía, C.A.Z., Miranda, J.P.R., 2014. Evaluation of the air quality by using a mobile laboratory: Puente Aranda (Bogota D.C., Colombia). Rev. Fac. Ing. 71, 153e166.

Sun, L., Wei, J., Duan, D.H., Guo, Y.M., Yang, D.X., Jia, C., Mi, X.T., 2016. Impact of Land-Use and Land-Cover Changeonurban airquality inrepresentativecities of China. J. Atmos. SoleTerr. Phys. 142, 43e54.

Taneja, K., Ahmad, S., Ahmad, K., Attri, S., 2016. Time series analysis of aerosol optical depth over New Delhi using BoxeJenkins ARIMA modeling approach. Atmos. Pollut. Res. 7, 585e596.

Titos, G., Lyamani, H., Pandolfi, M., Alastuey, A., Alados-Arboledas, L., 2014. Identification of fine (PM1) and coarse (PM10-1) sources of particulate matter in an urban environment. Atmos. Environ. 89, 593e602.

Turias, I.J., Gonzalez, F.J., Martin, M.L., Galindo, P.L., 2008. Prediction models of CO, SPM and SO2 concentrations in the Campo de Gibraltar Region, Spain: a multiple comparison strategy. Environ. Monit. Assess. 143, 131e146.

Turner, D.B.,1964. A diffusion model for an urban area. J. Appl. Meteorol. 3, 83e91.

U.S.EPA (Environmental Protection Agency),1999. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. U.S.EPA/625/R-96/010a, Washington D.C., p. 723.

Vecchi, R., Marcazzan, G., Valli, G., 2007. A study on nighttime-daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmos. Environ. 41, 2136e2144.

Waked, A., Favez, O., Alleman, L.Y., Piot, C., Petit, J.E., Delaunay, T., Verlinden, E., Golly, B., Besombes, J.L., Jaffrezo, J.L., Leoz-Garziandia, E., 2014. Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos. Chem. Phys. 14, 3325e3346.

Wang, P., Liu, Y., Qin, Z., Zhang, G., 2015. A novel hybrid forecasting model for PM10 and SO2 daily concentrations. Sci. Total Environ. 505, 1202e1212.

Wolf-Benning, U., Draheim, T., Endlicher, W., 2009. Spatial and temporal differences of particulate matter in Berlin. Int. J. Environ. Waste Manag. 4, 3e16.

Yin, S., Cai, J.P., Chen, L.P., Shen, Z.M., Zou, X.D., Wu, D., Wang, W.H., 2007. Effects of vegetation status in urban green spaces on particle removal in a street canyon atmosphere. Acta Ecol. Sin. 27, 4590e4595.

Zhang, H., Liu, Y., Shi, R., Yao, Q., 2013. Evaluation of PM10 forecasting based on the artificial neural network model and intake fraction in an urban area: a case study in Taiyuan City, China. J. Air Waste Manag. Assoc. 63, 755e763.

Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A., 2012. Real-time air quality forecasting, part I: history, techniques, and current status. Atmos. Environ. 60, 632e655.

Zhou, Q., Jiang, H., Wang, J., Zhou, J., 2014. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 496, 264e274.

Zoras, S., Triantafyllou, A.G., Deligiorgi, D., 2006. Atmospheric stability and PM10 concentrations at far distance from elevated point sources in complex terrain: worst-case episode study. J. Environ. Manag. 80, 295e302.

Zou, B., Xu, S., Sternberg, T., Fang, X., 2016. Effect of land use and cover changeon air quality in urban sprawl. Sustain. Switz. 8

Kaynak Göster

  • ISSN: 1309-1042
  • Yayın Aralığı: Yılda 12 Sayı
  • Başlangıç: 2010

4b 3.2b

Sayıdaki Diğer Makaleler

Evaluation of indoor/outdoor urban air pollution by magnetic, chemical and microscopic studies

M. Jelenska, B. GORKA-KOSTRUBİEC, T. WERNER, M. Kadzialko-Hofmokl, I. Szczepaniak-Wnuk, T. Gonet, P. Szwarczewski

Temporal and spatial variability of ground level atmospheric methane concentrations in the Ebro River Delta

Alba AGUEDA, Claudia GROSSİ, Elsa PASTOR, Eva RİOJA, Laura Sanchez-García, Oscar BATET, Roger CURCOLL, Marina EALO, Manel NOFUENTES, PAOLA OCCHİPİNTİ, Xavier RODO, Josep-Anton MORGUİ

Wet deposition fluxes of atmospheric inorganic reactive nitrogen at an urban and rural site in the Indo-Gangetic Plain


Selection of bias correction models for improving the daily PM10 forecasts of WRF-EURAD in Porto, Portugal


ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity

Carlos ZAFRA, Yenifer ANGEL, Eliana TORRES

Control chart and Six sigma based algorithms for identification of outliers in experimental data, with an application to particulate matter PM10

Martina Campulova, Petr Veselík, Jaroslav Michalek

Seasonal and spatial variations in dust deposition rate and concentrations of dust-borne heavy metals, a case study from Isfahan, central Iran

Samira NOROUZİ, Hossein KHADEMİ, Shamsollah AYOUBİ, Ángel Faz CANO, Jose A. ACOSTA

Estimation of landfill methane emissions using stochastic search methods

Tarek KORMİ, Nizar Bel Hadj ALİ, Tarek ABİCHOU, Roger GREEN

Recursive neural network model for analysis and forecast of PM10 and PM2.5


Survey of organochlorine pesticides in the atmosphere and soil of two typical landforms of Southern Anhui Province, China: Sources and air-soil exchange

Siquan WANG, Xiaoguo WU, Jiliang ZOU, Afeng CHEN, Xiucheng TAO, Yuhong CAO