Ambient PM2.5, polycyclic aromatic hydrocarbons and biomass burning tracer in Mae Sot District, western Thailand

Levoglucosan, as a biomass tracer, and sixteen polycyclic aromatic hydrocarbons (PAHs) in PM2.5 ambient air samples collected from Tak Province during smoke and non-smoke episodes were analyzed. The average PM2.5, levoglucosan and total PAHs concentrations in the smoke episode were 61.64 ± 22.85, 1.00 ± 0.41 μg/m3 and 6.32 ± 2.26 ng/m3, respectively. This figures were significantly higher than those recorded during the nonepisode (13.76 ± 5.58, 0.12 ± 0.03 μg/m3 and 2.59 ± 0.15 ng/m3, respectively). The predominant PAHs proportions were comprised of Phenanthrene and Benzo[ghi]perylene and levoglucosan concentrations revealed a strong correlation with PM2.5 concentrations, which indicated the source of PM2.5 from biomass burning. Toxicity equivalent (TEQBaP) and the mutagenic equivalent (MEQBaP) levels during the smoke episode were significantly higher than those in the non-smoke episode. Furthermore, lifetime lung cancer risk recorded during smoke episode exceeded the acceptable cancer risk that has been recommended by US-EPA. These results suggest that this area was not only exposed to PAHs that originated from traffic combustion, but was also exposed from biomass burning emissions, particularly during biomass burning season when there is an increased risks of cancer and mutation. Although the exposure time in this area is relatively short, the high dose period of exposure occurs repetitively every year. In addition, backward trajectories showed that most of the air mass was generated from western region of Thailand and they were throughout the burning region not only emitted from local areas, but also from outside the country during the smoke episode.

Kaynakça

Amnuaylojaroen, T., Kreasuwun, J., 2012. Investigation of fine and coarse particulate matter from burning areas in Chiang Mai, Thailand using the WRF/CALPUFF. Chiang Mai J. Sci. 39 (2), 311–326.

ATSDR (Agency for Toxic Substances and Disease Registry), 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs). U.S. Department of Health & Human Services (Agency for Toxic Substances and Disease Registry). Balgobin, A., Ramroop Singh, N., 2019. Source apportionment and seasonal cancer risk of polycyclic aromatic hydrocarbons of sediments in a multi-use coastal environment containing a Ramsar wetland, for a Caribbean island. Sci. Total Environ. 664, 474–486.

Bari, M.A., Baumbach, G., Kuch, B., Scheffknecht, G., 2011. Air pollution in residential areas from wood-fired heating. Aerosol Air Qual. Res. 11, 749–757.

Bari, MdA., Baumbach, G., Kuch, B., Scheffknecht, G., 2010. Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern German. Air Qual. Atmos. Health 3, 103–116.

Benson, N.U., Essien, J.P., Asuquo, F.E., Eritobor, A.L., 2014. Occurrence and distribution of polycyclic aromatic hydrocarbons in surface microlayer and subsurface seawater of Lagos Lagoon, Nigeria. Environ. Monit. Assess. 186, 5519–5529.

Boström, C.-E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., Rannug, A., Törnqvist, M., Victorin, K., Westerholm, R., 2002. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 110 (3), 451–488.

Brown, J.S., Gordon, T., Price, O., Asgharian, B., 2013. Thoracic and respirable particle definitions for human health risk assessment. Part. Fibre Toxicol. 10, 12.

Cal-EPA, 2005. Air Toxics Hot Spots Program Risk Assessment Guidelines. California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Air Toxicology and Epidemiology Section, Oakland, CA.

Callén, M.S., Iturmendi, A., López, J.M., 2014. Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environ. Pollut. 195, 167–177.

Casati, R., Scheer, V., Vogt, R., Benter, T., 2007. Measurement of nucleation and soot mode particle emission from a diesel passenger car in real world and laboratory in situ dilution. Atmos. Environ. 41, 2125–2135.

Chantara, S., Sillapapiromsuk, S., Wiriya, W., 2012. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005–2009), their possible sources and relation to air mass movement. Atmos. Environ. 60, 88–98.

Chantara, S., Wangkarn, S., Sangchan, W., Rayanakorn, M., 2010. Spatial and temporal variations of ambient PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai and Lamphun Provinces, Thailand. Desalin. Water Treat. 19, 17–25.

Chantrara, S., Wangkarn, S., Tengcharoenkul, U., Sangchan, W., Rayanakorn, M., 2009. Chemical analysis of airborne particulates for air pollutants in Chiang Mai and Lamphun provinces, Thailand. Chiang Mai J. Sci. 36 (2), 123–135.

Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., LAM, Y.F., Pereira, G., Ding, A., Huang, X., Dumka, U.C., 2017. A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 579, 1000–1034.

Chen, Q., Chen, Y., Luo, X.S., Hong, Y., Hong, Z., Zhao, Z., Chen, J., 2019. Seasonal characteristics and health risks of PM2.5-bound organic pollutants in industrial and urban areas of a China megacity. J. Environ. Manag. 245, 273–281.

Chen, T., He, J., Lu, X., She, J., Guan, Z., 2016. Spatial and temporal variations of PM2.5 and its relation to meteorological factors in the urban area of Nanjing, China. Int. J. Environ. Res. Public Health 13, 921.

Choi, Y.-S., Ho, C.-H., Kim, J., Gong, D.-Y., Park, R.J., 2008. The impact of aerosols on the summer rainfall frequency in China. J. Appl. Meteorol. Climatol. 47 (6), 1802–1813. https://doi.org/10.1175/2007jamc1745.1.

Chuang, M.T., Chou, C.C.K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.- J., Lee, C.T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmos. Environ. 78, 72–81.

Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Engling, G., Chang, S.-Y., Chang, S.-C., Sheu, G.- R., Lin, N.-H., Sopajaree, K., Chang, Y.-J., Hong, G.-J., 2016. Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan – implication of aerosol aging during longrange transport. Atmos. Environ. 137, 101–112.

Chuesaard, T., Chetiyanukornkul, T., Kameda, T., Hayakawa, K., Toriba, A., 2014. Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol Air Qual. Res. 14, 1247–1257.

Crosbie, E., Sorooshian, A., Monfared, N.A., Shingler, T., Esmaili, O., 2014. A multi-year aerosol characterization for the greater tehran area using satellite, surface, and modeling data. Atmosphere 5 (2), 178–197. https://doi.org/10.3390/atmos5020178.

de Oliveira Alves, N., Brito, J., Caumo, S., Arana, A., Sandra de Souza Hacon, S., Artaxo, P., Hillamo, R., Teinilä, K., de Medeiros, S.R.B., de Castro Vasconcellos, P., 2015. Biomass burning in the Amazon region: aerosol source apportionment and associated health risk assessment. Atmos. Environ. 120, 277–285.

Draxler, R.R., Hess, G.D., 1998. An overview of the HYSPLIT-4 modeling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 47, 295–308.

Durant, J., Lafleur, A., Busby, W., Donhoffner, L., Penman, B., Crespi, C., 1999. Mutagenicity of C24H14 PAH in human cells expressing CYP1A1. Mutat. Res. 446, 1–14.

Estrellan, C.R., Iino, F., 2010. Toxic emissions from open burning. Chemosphere 80, 193–207.

Fartas, F.M., Othman, M.R., Ali rajeb, F., Latif, M.T., 2009. Determination of levoglucosan in PM10 and biomass close burning residue sanples using anthrone-surfuric acid colorimetric method. J. Appl. Sci. Res. 5 (10), 1663–1667.

Feltman, J.A., Straka, T.J., Post, C.J., Sperry, S.L., 2012. Geospatial analysis application to forecast wildfire occurrences in South Carolina. Forests 3 (2), 265–282. https://doi. org/10.3390/f3020265.

Fine, P.M., Cass, G.R., Simoneit, B.R.T., 2001. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the Northeastern United States. Environ. Sci. Technol. 35, 2665–2675.

Freeman, D.J., Cattel, C.R., 1990. Wood burning as a source of atmospheric polycyclic hydrocarbons. Environ. Sci. Technol. 24, 1581–1585.

Garivait, S., Bonnet, S., Kamnoed, O., 2008. Air pollutant emissions from paddy residues open burning and their potential for bioenergy in the greater Mekong sub-region (Cambodia, Lao PDR, Thailand and Vietnam). GMSARN Int. J. 2, 169–174.

Ghanavati, N., Nazarpour, A., Watts, M.J., 2019. Status, source, ecological and health risk assessment of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in street dust of Abadan, Iran. Catena 177, 246–259.

Godłowska, J., Hajto, M.J., Tomaszewska, A.M., 2015. Spatial analysis of air masses backward trajectories in order to identify distant sources of fi ne particulate matter emission. Arch. Environ. Prot. 41 (2), 28–35. https://doi.org/10.1515/aep-2015- 0015.

Greene, N.A., Morris, V.R., 2006. Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. Int. J. Environ. Res. Public Health 3, 86–97.

Guo, L.-C., Bao, L.-J., She, J.-W., Zeng, E.Y., 2014. Significance of wet deposition to removal of atmospheric particulate matter and polycyclic aromatic hydrocarbons: a case study in Guangzhou, China. Atmos. Environ. 83, 136–144. https://doi.org/10. 1016/j.atmosenv.2013.11.012.

Guo, L.-C., Zhang, Y., Lin, H., Zeng, W., Liu, T., Xiao, J., Rutherford, S., You, J., Ma, W., 2016. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut. 215, 195–202.

Hagedorn, H.-W., Scherer, G., Engl, J., Riedel, K., Cheung, F., Errington, G., Shepperd, J., McEwan, M., 2009. Urinary excretion of phenolic polycyclic aromatic hydrocarbons (OH-PAH) in nonsmokers and in smokers of cigarettes with different ISO tar yields. Anal. Toxicol. 33, 301–309.

Harrison, R.M., Yin, J., 2000. Particulate matter in the atmosphere: which particle properties are important for its effects on health. Sci. Total Environ. 249, 85–101.

Hoffmann, D., Tilgner, A., Iinuma, Y., Herrmann, H., 2010. Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environ. Sci. Technol. 44, 694–699.

Hu, Q.-H., Xie, Z.-Q., Wang, X.-M., Kang, H., Zhang, P., 2013. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic. Sci. Rep. 3 (3119), 1–7. https://doi.org/10.1038/srep03119.

Huang, K., Fu, J.S., Hsu, N.C., Gao, Y., Dong, X., Tsay, S.-C., Lam, Y.F., 2013. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASEASIA. Atmos. Environ. 78, 291–302.

Hyer, E.J., Chew, B.N., 2010. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmos. Environ. 44, 1422–1427.

IARC (International Agency for Research on Cancer), 1983. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Human. Polynuclear Aromatic Compounds, Part I, Chemical, Environmental, and Experimental Data. World Health Organization, Geneva, Switzerland.

Igwe, J.C., Ukaogo, P.O., 2015. Environmental effects of polycyclic aromatic hydrocarbons. J. Nat. Sci. Res. 5 (7), 117–131.

Jayamurugan, R., Kumaravel, B., Palanivelraja, S., Chockalingam, M.P., 2013. Influence of temperature, relative humidity and seasonal variability on ambient air quality in a coastal urban area. Int. J. Atmos. Sci. 1–7 2013.

Jia, Y., Stone, D., Wang, W., Schrlau, J., Tao, S., Simonich, S.L.M., 2011. Estimated reduction in cancer risk due to PAH exposures if source control measures during the 2008 Beijing Olympics were sustained. Environ. Health Perspect. 119, 815–820.

Khamkaew, C., Chantara, S., Janta, R., Pani, S.K., Prapamontol, T., Kawichai, S., Wiriya, W., Lin, N.-H., 2016. Investigation of biomass burning chemical components over northern Southeast Asia during 7-SEAS/BASELInE 2014 Campaign. Aerosol Air Qual. Res. 16, 2655–2670.

Kim Oanh, N.T., Leelasakultum, K., 2011a. Characterization of particulate matter emission from open burning of rice straw. Atmos. Environ. 45, 493–502.

Kim Oanh, N.T., Leelasakultum, K., 2011b. Analysis of meteorology and emission in haze episode prevalence over mountain-bounded region for early warning. Sci. Total Environ. 409, 2261–2271.

Kim, K.-H., Kabir, E., Kabir, S., 2015. A review on the human health impact of airborne particulate matter. Environ. Int. 74, 136–143.

Kulkarni, P., Venkataraman, C., 2000. Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmos. Environ. 34, 2785–2790.

Kumagai, K., 2010. Determination of dicarboxylic acids and levoglucosan in fine particles in the Kanto plain, Japan, for source apportionment of organic aerosols. Aerosol Air Qual. Res. https://doi.org/10.4209/aaqr.2009.11.0075.

Lee, C.T., Chuang, M.T., Lin, N.H., Wang, J.L., Sheu, G.R., Wang, S.H., Huang, H., Chen, H.W., Weng, G.H., Hsu, S.P., 2011. The enhancement of biosmoke from Southeast Asia on PM2.5 water-soluble ions during the transport over the Mountain Lulin site in Taiwan. Atmos. Environ. 45, 5784–5794.

Lemieuxa, P.M., Lutesb, C.C., Santoianni, D.A., 2004. Emissions of organic air toxics from open burning: a comprehensive review. Prog. Energy Combust. Sci. 30, 1–32.

Liu, J., Man, R., Ma, S., Li, J., Wu, Q., Peng, J., 2015. Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2. 5 in Guangzhou, China. Mar. Pollut. Bull. 100, 134–143.

Liu, N., Yu, Y., He, J., Zhao, S., 2013. Integrated modeling of urban–scale pollutant transport: application in a semi–arid urban valley, Northwestern China. Atmos. Pollut. Res. 4, 306–314.

Lou, C., Liu, H., Li, Y., Peng, Y., Wang, J., Dai, L., 2017. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze river delta, China. Environ. Monit. Assess. 189, 582.

Manoli, E., Kouras, A., Karagkiozidou, O., Argyropoulos, G., Voutsa, D., Samara, C., 2016. Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environ. Sci. Pollut. Control Ser. 23, 3556–3568.

McGowan, H., Clark, A., 2008. Identification of dust transport pathways from Lake Eyre, Australia using Hysplit. Atmos. Environ. 42, 6915–6925.

Miguel, A.H., Kirchstetter, T.W., Harley, R.A., Hering, S.V., 1998. On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ. Sci. Technol. 32 (4), 450–455.

Mishra, N., Ayoko, G.A., Morawska, L., 2016. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: occurrence, toxicity and source apportionment. Environ. Pollut. 208, 110–117.

Munir, S., 2013. Modeling particulate matter concentrations in Makkah, applying a statistical modeling approach. Aerosol Air Qual. Res. https://doi.org/10.4209/aaqr. 2012.11.0314.

Munir, S., Habeebullah, T.M., Mohammed, A.M.F., Morsy, E.A., Rehan, M., Ali, K., 2017. Analysing PM2.5 and its association with PM10 and meteorology in the arid climate of Makkah, Saudi arabia. Aerosol Air Qual. Res. 17 (2), 453–464. https://doi.org/10. 4209/aaqr.2016.03.0117.

Nisbet, I.C.T., LaGoy, P.K., 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 16, 290–300.

Owoade, O.K., Olise, F.S., Ogundele, L.T., Fawole, O.G., Olaniyi, H.B., 2012. Correlation between particulate matter concentrations and meteorological parameters at a site in ILE-IFE, Nigeria. IFE J. Sci. 14 (1), 88–93.

Pengchai, P., Chantara, S., Sopajaree, K., Wangkarn, S., Tengcharoenkul, U., Rayanakorn, M., 2009. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand. Environ. Monit. Assess. 154, 197–218.

Petry, T., Schmid, P., Schlatter, C., 1996. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 32 (4), 639–648.

Phoothiwut, S., Junyapoom, S., 2013. Size distribution of atmospheric particulates and particulate-bound polycyclic aromatic hydrocarbons and characteristics of PAHs during haze period in Lampang Province, Northern Thailand. Air Qual. Atmos. Health 6, 397–405.

Pöhlker, C., Walter, D., Paulsen, H., Könemann, T., Rodríguez-Caballero, E., Moran- Zuloaga, D., Brito, J., Carbone, S., Degrendele, C., Després, V.R., Ditas, F., Holanda, B.A., Kaiser, J.W., Lammel, G., Lavrič, J., Ming, J., Pickersgill, D., Pöhlker, M.L., Praß, M., Ruckteschler, N., Saturno, J., Sörgel, M., Wang, Q., Weber, B., Wolff, S., Artaxo, P., Pöschl, U., Andreae, M.O., 2018. Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory. Atmos. Chem. Phys. 19 (13), 8425–8470. https://doi.org/10.5194/acp-19-8425-2019.

Pongpiachan, S., 2013. Diurnal variation, vertical distribution and source apportionment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in Chiang-Mai, Thailand. Asian Pac. J. Cancer Prev. APJCP 14, 1851–1863.

Pongpiachan, S., 2016. Incremental lifetime cancer risk of PM2.5 bound polycyclic aromatic hydrocarbons (PAHs) before and after the Wildland fire episode. Aerosol Air Qual. Res. 16, 2907–2919.

Pongpiachan, S., Hattayanone, M., Cao, J., 2017b. Effect of agricultural waste burning season on PM2. 5-bound polycyclic aromatic hydrocarbon (PAH) levels in Northern Thailand. Atmos. Pollut. Res. 8 (6), 1069–1080.

Pongpiachan, S., Kositanont, C., Palakun, J., Liu, S., Ho, K.F., Cao, J., 2015b. Effects of day-of-week trends and vehicle types on PM2.5-bounded carbonaceous compositions. Sci. Total Environ. 532, 484–494.

Pongpiachan, S., Liu, S., Huang, R., Zhao, Z., Palakun, J., Kositanont, C., Cao, J., 2017a. Variation in day-of-week and seasonal concentrations of atmospheric PM 2.5-bound metals and associated health risks in Bangkok, Thailand. Arch. Environ. Contam. Toxicol. 72 (3), 364–379.

Pongpiachan, S., Tipmanee, D., Khumsup, C., Kittikoon, I., Hirunyatrakul, P., 2015a. Assessing risks to adults and preschool children posed by PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during a biomass burning episode in Northern Thailand. Sci. Total Environ. 508, 435–444.

Popovicheval, O.B., Shonija, N.K., Persiantseva, N., Timofeev, M., Diapouli, E., Eleftheriadis, K., Borgese, L., Nguyen, X.A., 2017. Aerosol pollutants during agricultural biomass burning: a case study in Ba vi region in Hanoi, Vietnam. Aerosol Air Qual. Res. 17, 2762–2779.

Pungkhom, P., Jinsart, W., 2014. Health risk assessment from bush fire air pollutants using statistical analysis and geographic information system: a case study in Northern Thailand. Geoinformatics 10 (1), 17–24.

Qian, Y., Gong, D., Fan, J., Leung, L.R., Bennartz, R., Chen, D., Wang, W., 2009. Heavy pollution suppresses light rain in China: observations and modeling. J. Geophys. Res. 114. https://doi.org/10.1029/2008jd011575.

Qu, C., Li, B., Wu, H., Wang, S., Giesy, J.P., 2015. Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environ. Geochem. Health 37, 587–601.

Ré-Poppi, N., Santiago-Silva, M., 2005. Polycyclic aromatic hydrocarbons and other selected organic compounds in ambient air of Campo Grande City, Brazil. Atmos. Environ. 39, 2839–2850.

Said, S.N.m.B.M., Zahran, E.-S.M.M., Shams, S., 2017. Forest fire risk assessment using hotspot analysis in GIS. Open Civ. Eng. J. 11 (1), 786–801.

Shen, G.F., Wang, W., Yang, Y.F., Ding, J.N., Xue, M., Min, Y.J., Zhu, C., Shen, H.Z., Li, W., Wang, B., Wang, R., Wang, X.L., Tao, S., Russell, A.G., 2011. Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas-particle partitioning. Environ. Sci. Technol. 45, 1206–1212.

Simoneit, B.R., 2002. Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17, 129–162.

Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 33, 173–182.

Slaughter, J.C., Lumley, T., Sheppard, L., Koenig, J.Q., Shapiro, G.G., 2003. Effects of ambient air pollution on symptom severity and medication use in children with asthma. Ann. Allergy Asthma Immunol. 91 (4), 346–353.

Stohl, A., 1998. Computation, accuracy and applications OF trajectoriesða review and bibliography. Atmos. Environ. 32 (6), 947–966.

Streets, D., Yarber, K., 2003. Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Glob. Biogeochem. Cycles 17 (4), 1099. https://doi.org/10. 1029/2003GB002040.

Sulong, N.A., Latif, M.T., Khan, M.F., Amil, N., Ashfold, M.J., Wahab, M.I.A., Chan, K.M., Sahani, M., 2017. Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Sci. Total Environ. 601–602, 556–570.

Sun, J., Huang, L., Liao, H., Li1, J., Hu, J., 2017. Impacts of regional transport on particulate matter pollution in China: a review of methods and results. Curr. Pollut. Rep. 3, 182–191. https://doi.org/10.1007/s40726-017-0065-5.

Sun, S., Xia, Z., Wang, T., Wu, M., Zhang, Q., Yin, J., Zhou, Y., Yang, H., Wang, W., Yu, Y., 2016. Pollution level, sources, and lung cancer risk of PM10-bound polycyclic aromatic hydrocarbons (PAHs) in summer in Nanjing, China. J. Chem. 1–10 ID 4546290.

Thepnuan, D., Chantara, S., Lee, C.-T., Lin, N.-H., Tsai, Y.I., 2019. Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia. Sci. Total Environ. 658, 708–722.

Tsai, P.-J., Shih, T.-S., Chen, H.-L., Lee, W.-J., Lai, C.-H., Liou, S.-H., 2004. Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmos. Environ. 38, 333–343.

Tsai, Y.I., Sopajaree, K., Auranee Chotruksa, A., Hsin-Ching Wu, H.-C., Kuo, S.-C., 2013. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand. Atmos. Environ. 78, 93–104. https://doi.org/10.1016/j.atmosenv.2012.09.040.

US-EPA (United States of Environmental Protection Agency), 2005. Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum. Washington, DC., EPA/630/P- 03/001B, March 2005.

Wang, F., Chen, D.S., Cheng, S.Y., Li, J.B., Li, M.J., Ren, Z.H., 2010. Identification of regional atmospheric PM10 transport pathways using HYSPLIT, MM5–CMAQ and synoptic pressure pattern analysis. Environ. Model. Softw 25, 927–934.

Wang, J., Zhang, M., Bai, X., Tan, H., Li, S., Liu, J., Zhang, R., Wolters, M.A., Qin, X., Zhang, M., Lin, H., Li, Y., Li, J., Chen, L., 2017. Large-scale transport of PM2.5 in the lower troposphere during winter cold surges in China. Sci. Rep. 7 (13238), 1–10. https://doi.org/10.1038/s41598-017-13217-2.

Wang, J., Chen, S., Tian, M., Zheng, X., Gonzales, L., Ohura, T., Mai, B., Simonich, S.L., 2012. Inhalation cancer risk associated with exposure to complex polycyclic aromatic hydrocarbon mixtures in an electronic waste and urban area in South China. Environ. Sci. Technol. 46, 9745–9752.

Wang, J., Ogawa, S., 2015. Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 12, 9089–9101.

Wang, Q., Kobayashi, K., Lu, S., Nakajima, D., Wang, W., Zhang, W., Sekiguchi, K., Terasaki, M., 2016. Studies on size distribution and health risk of 37 species of polycyclic aromatic hydrocarbons associated with fine particulate matter collected in the atmosphere of a suburban area of Shanghai city, China. Environ. Pollut. 214, 149–160.

Wang, W., Huang, M.J., Kang, Y., Wang, H.-S., Leung, A.O.W., Cheung, K.C., Wong, M.H., 2011. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci. Total Environ. 409, 4519–4527.

WHO, 2000. World Health Organization. Air Quality Guidelines for Europe, second ed. (chapter 5).9 polycyclic aromatic hydrocarbons (PAHs). Copenhagen, Denmark.

Wiriya, W., Chantara, S., Sillapapiromsuk, S., Lin, N.-H., 2016. Emission profiles of PM10- bound polycyclic aromatic hydrocarbons from biomass burning determined in Chamber for assessment of air pollutants from open burning. Aerosol Air Qual. Res. 16, 2716–2727.

Wiriya, W., Prapamontol, T., Chantara, S., 2013. PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): seasonal variations, source identification, health risk assessment and their relationship to air-mass movement. Atmos. Res. 124, 109–122.

Wiwatanadate, P., Liwsrisakun, C., 2011. Acute effects of air pollution on peak expiratory flow rates and symptoms among asthmatic patients in Chiang Mai, Thailand. Int. J. Hyg Environ. Health 214, 251–257.

Yujie Xin, Y., Wang, G., Chen, L., 2016. Identification of long-range transport pathways and potential sources of PM10 in Tibetan Plateau Uplift area: case study of Xining, China in 2014. Aerosol Air Qual. Res. 16, 1044–1054. https://doi.org/10.4209/aaqr. 2015.05.0296.

Zhu, C., Kawamura, K., Kunwar, B., 2015. Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmos. Chem. Phys. 15, 1959–1973.

Zhu, L., Huang, X., Shi, H., Cai, X., Song, Y., 2011. Transport pathways and potential sources of PM10 in Beijing. Atmos. Environ. 45, 594–604.

Kaynak Göster

326 210

Arşiv
Sayıdaki Diğer Makaleler

Methane biofiltration under different strategies of nutrient solution addition

Bahman KHABİRİ, Milad FERDOWSİ, Gerardo BUELNA, J. Peter JONES, Mich le HEİTZ

Emission characteristic and environmental impact of process-based VOCs from prebaked anode manufacturing industry in Zhengzhou, China

Shijie HAN, Qingyan ZHAO, Ruiqin Zhang, Yonggang LİU, Li CHEN, Yishun ZHANG, Yidan Lİ, Shasha Yin, Qishe Yan

Ambient PM2.5, polycyclic aromatic hydrocarbons and biomass burning tracer in Mae Sot District, western Thailand

Radshadaporn JANTA, Kazuhiko SEKİGUCHİ, Ryosuke YAMAGUCHİ, Khajornsak SOPAJAREE, Siwatt Pongpiachan, Thaneeya CHETİYANUKORNKUL

Nanoparticle size distributions in Mexico city

L. CAUDİLLO, D. SALCEDO, O. PERALTA, T. CASTRO, H. ALVAREZ- OSPİNA

Assessing particle dry deposition in an urban environment by using dispersion models

Davi de Ferreyro MONTİCELLİ, Jane Meri SANTOS, Harerton Oliveira DOURADO, Davidson Martins MOREİRA, Neyval Costa Reis JR

Spatial and temporal evaluation of H2S, SO2 and NH3 concentrations near Cerro Prieto geothermal power plant in Mexico

L.C. AGUİLAR- DODİER, J.E. CASTİLLO, Penelope J.E. QUİNTANA, Lupita D. MONTOYA, Luisa T. MOLİNA, Miguel ZAVALA, V. ALMANZA- VELOZ, J.G. RODRİGUEZ- VENTURA

Simulation of atmospheric pollutant dispersion considering a bi-flux process and fractional derivatives

Anderson PALMEİRA, Paulo XAVİER, Davidson Martins MOREİRA

Local regressions for decomposing CO2 and CH4 time-series in a semi-arid ecosystem

Beatriz FERNANDEZ-DUQUE, Isidro A. PEREZ, M. ngeles GARCİA, Nuria PARDO, M. Luisa SANCHEZ

Performance evaluation of a multiscale modelling system applied to particulate matter dispersion in a real traffic hot spot in Madrid (Spain)

J.L. SANTİAGO, B. SANCHEZ, C. QUAASSDORFF, D. de la PAZ, A. MARTİLLİ, F. MARTİN, R. BORGE, E. RİVAS, F. J. GOMEZ- MORENO, E. DİAZ, B. ARTİNANO, C. YAGÜE, S. VARDOULAKİS

Study of diesel-biodiesel blends combustion and emission characteristics in a CI engine by adding nanoparticles of Mn (II) supramolecular complex

Medhat ELKELAWY, Safaa El-din H. ETAİW, Hagar Alm-Eldin BASTAWİSSİ, Hassan MARİE, Ahmed ELBANNA, Hitesh PANCHAL, Kishorkumar SADASİVUNİ, Hitesh BHARGAV