Acidity and inorganic ion formation in PM2.5 based on continuous online observations in a South China megacity

To investigate the evolutionary characteristics and formation mechanisms of PM2.5 in areas with high environmental capacity, Shenzhen, a representative megacity on the southeast coast of China, was chosen for analysis in this study. Continuous quantitative observations of the mass concentrations of PM2.5, water-soluble inorganic ions (WSIIs) in PM2.5 and relevant reactive gaseous precursors were conducted for 1 year at an urban site in Shenzhen. The differences in the meteorological factors and in the major air pollutants between the polluted and clean periods were compared in detail. Daily air quality index (AQI) values were used to distinguish these two periods. Using the ISORROPIA-II thermodynamic equilibrium model, aerosol pH and liquid water content measurements were obtained for the first time during both the polluted period and the clean period. The aerosol pH values during the polluted period and the clean period were determined to be 7.55 ± 0.58 and 4.23 ± 2.99, respectively. The secondary conversion efficiencies of SO2 and NO2 to sulfate and nitrate, respectively, were found to increase during the polluted period. The polluted period exhibited a combination of both high PM2.5 and high O3 pollution. In the clean period, the ozone concentrations remained at high levels despite a significant drop in PM2.5 levels. The potential sources and transportation modes of air pollution in Shenzhen were also discussed.

Kaynakça

Battaglia, M.A., Douglas, S., Hennigan, C.J., 2017. Effect of the urban heat island on aerosol pH. Environ. Sci. Technol. 51, 13095–13103.

Cao, Z.Y., Zhou, X.H., Ma, Y.J., Wang, L.P., Wu, R.D., Chen, B., Wang, W.X., 2017. The concentrations, formations, relationships and modeling of sulfate, nitrate and ammonium (SNA) aerosols over China. Aerosol Air Qual. Res. 17, 84–97.

Chan, C.K., Yao, X., 2008. Air pollution in mega cities in China. Atmos. Environ. 42, 1–42.

Chen, X., Zhang, L.W., Huang, J.J., Song, F.J., Zhang, L.P., Qian, Z.M., Trevathan, E., Mao, H.J., Han, B., Vaughn, M., Chen, K.X., Liu, Y.M., Chen, J., Zhao, B.X., Jiang, G.H., Gu, Q., Bai, Z.P., Dong, G.H., Tang, N.J., 2016. Long-term exposure to urban air pollution and lung cancer mortality: a 12-year cohort study in Northern China. Sci. Total Environ. 571, 855–861.

Cheng, Y.F., Zheng, G.J., Wei, C., Mu, Q., Zheng, B., Wang, Z.B., Gao, M., Zhang, Q., He, K.B., Carmichael, G., Poschl, U., Su, H., 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances 2, e1601530.

Chi, X.Y., He, P.Z., Jiang, Z., Yu, X.W., Yue, F.G., Wang, L.Q., Li, B.K., Kang, H., Liu, C., Xie, Z.Q., 2018. Acidity of aerosols during winter heavy haze events in beijing and Gucheng, China. J. Meteorol. Res. 32, 14–25.

Dewan, N., Wang, Y.Q., Zhang, Y.X., Zhang, Y., He, L.Y., Huang, X.F., Majestic, B.J., 2016. Effect of pollution controls on atmospheric PM2.5 composition during universiade in shenzhen, China. Atmosphere 7, 14.

Dhammapala, R., Claiborn, C., Corkill, J., Gullett, B., 2006. Particulate emissions from wheat and Kentucky bluegrass stubble burning in eastern Washington and northern Idaho. Atmos. Environ. 40, 1007–1015.

Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., Zhang, Y., 2019. Aerosol pH and its driving factors in Beijing. Atmos. Chem. Phys. 19, 7939–7954.

Du, H., Kong, L., Cheng, T., Chen, J., Du, J., Li, L., Xia, X., Leng, C., Huang, G., 2011. Insights into summertime haze pollution events over Shanghai based on online watersoluble ionic composition of aerosols. Atmos. Environ. 45, 5131–5137.

Duan, F.K., Liu, X.D., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ. 38, 1275–1282.

Fang, T., Guo, H.Y., Zeng, L.H., Verma, V., Nenes, A., Weber, R.J., 2017. Highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity. Environ. Sci. Technol. 51, 2611–2620.

Fountoukis, C., Nenes, A., 2007. Isorropia II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4 +-Na+-SO4 2--NO3 --Cl--H2O aerosols. Atmos. Chem. Phys. 7, 4639–4659.

Freedman, M.A., Ott, E.J.E., Marak, K.E., 2019. Role of pH in aerosol processes and measurement challenges. J. Phys. Chem. A 123, 1275–1284.

Ge, B., Xu, X., Ma, Z., Pan, X., Wang, Z., Lin, W., Ouyang, B., Xu, D., Lee, J., Zheng, M., Ji, D., Sun, Y., Dong, H., Squires, F.A., Fu, P., Wang, Z., 2019. Role of ammonia on the feedback between AWC and inorganic aerosol formation during heavy pollution in the north China plain. Earth and Space Science 0.

Gorai, A.K., Kanchan, Goyal, P., 2015. A review on air quality indexing system. Asian J. Atmos. Environ. 9, 101–113.

Guo, H., Sullivan, A.P., Campuzano-Jost, P., Schroder, J.C., Lopez-Hilfiker, F.D., Dibb, J.E., Jimenez, J.L., Thornton, J.A., Brown, S.S., Nenes, A., Weber, R.J., 2016. Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. J. Geophys. Res. Atmos. 121, 10355–10376.

Guo, H.Y., Weber, R.J., Nenes, A., 2017. High levels of ammonia do not raise fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate production. Sci. Rep. 7, 7.

Han, B., Zhang, R., Yang, W., Bai, Z.P., Ma, Z.Q., Zhang, W.J., 2016a. Heavy haze episodes in Beijing during January 2013: inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site. Sci. Total Environ. 544, 319–329.

Han, Y.M., Stroud, C.A., Liggio, J., Li, S.M., 2016b. The effect of particle acidity on secondary organic aerosol formation from alpha-pinene photooxidation under atmospherically relevant conditions. Atmos. Chem. Phys. 16, 13929–13944.

He, J.J., Gong, S.L., Yu, Y., Yu, L.J., Wu, L., Mao, H.J., Song, C.B., Zhao, S.P., Liu, H.L., Li, X.Y., Li, R.P., 2017. Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities. Environ. Pollut. 223, 484–496.

He, L.Y., Hu, M., Huang, X.F., Zhang, Y.H., Yu, B.D., Liu, D.Q., 2006. Chemical characterization of fine particles from on-road vehicles in the Wutong tunnel in Shenzhen, China. Chemosphere 62, 1565–1573.

Hennigan, C.J., Izumi, J., Sullivan, A.P., Weber, R.J., Nenes, A., 2015. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys. 15, 2775–2790.

Hu, G., Zhang, Y., Sun, J., Zhang, L., Shen, X., Lin, W., Yang, Y., 2014. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations. Atmos. Res. 145, 1–11.

Huang, X.F., Chen, D.L., Lan, Z.J., Feng, N., He, L.Y., Yu, G.H., Luan, S.J., 2012. Characterization of organic aerosol in fine particles in a mega-city of South China: molecular composition, seasonal variation, and size distribution. Atmos. Res. 114, 28–37.

Huang, X.F., Zou, B.B., He, L.Y., Hu, M., Prevot, A.S.H., Zhang, Y.H., 2018. Exploration of PM2.5 sources on the regional scale in the Pearl River Delta based on ME-2 modeling. Atmos. Chem. Phys. 18, 11563–11580.

Jang, M.S., Czoschke, N.M., Lee, S., Kamens, R.M., 2002. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 298, 814–817.

Jia, S.G., Sarkar, S., Zhang, Q., Wang, X.M., Wu, L.L., Chen, W.H., Huang, M.J., Zhou, S.Z., Zhang, J.P., Yuan, L., Yang, L.M., 2018. Characterization of diurnal variations of PM2.5 acidity using an open thermodynamic system: a case study of Guangzhou, China. Chemosphere 202, 677–685.

Lai, A., Cheng, X., Liu, Y., Jiang, M., Liu, Y., Wang, X., Fan, Q., 2018. Characteristics of complex pollution with high concentrations of PM2.5 and O3 over the Pearl River Delta, China. Acta scientiarum naturalium universitaties Sunyatseni 57, 30–36.

Li, H., Cheng, J., Zhang, Q., Zheng, B., Zhang, Y., Zheng, G., He, K., 2019. Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: response to clean air actions. Atmos. Chem. Phys. Discuss. 1–26 2019.

Li, Y.J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., Chan, C.K., 2017. Real-time chemical characterization of atmospheric particulate matter in China: a review. Atmos. Environ. 158, 270–304.

Liu, M.X., Song, Y., Zhou, T., Xu, Z.Y., Yan, C.Q., Zheng, M., Wu, Z.J., Hu, M., Wu, Y.S., Zhu, T., 2017. Fine particle pH during severe haze episodes in northern China. Geophys. Res. Lett. 44, 5213–5221.

Liu, X.D., Van Espen, P., Adams, F., Cafmeyer, J., Maenhaut, W., 2000. Biomass burning in southern Africa: individual particle characterization of atmospheric aerosols and savanna fire samples. J. Atmos. Chem. 36, 135–155.

Meng, Z.Y., Xu, X.B., Lin, W.L., Ge, B.Z., Xie, Y.L., Song, B., Jia, S.H., Zhang, R., Peng, W., Wang, Y., Cheng, H.B., Yang, W., Zhao, H.R., 2018. Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain. Atmos. Chem. Phys. 18, 167–184.

Mizuno, S., Horikawa, Y., Okamoto, M., Kurosawa, T., 2010. Effect of SO2 Concentration on SOA Formation in a Photorreactor from a Mixture of Anthropogenic Hydrocarbons and HONO.

Ni, H.G., Qin, P.H., Cao, S.P., Zeng, H., 2011. Fate estimation of polycyclic aromatic hydrocarbons in soils in a rapid urbanization region, Shenzhen of China. J. Environ. Monit. 13, 313–318.

Pathak, R.K., Louie, P.K.K., Chan, C.K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmos. Environ. 38, 2965–2974.

Sareen, N., Waxman, E.M., Turpin, B.J., Volkamer, R., Carlton, A.G., 2017. Potential of aerosol liquid water to facilitate organic aerosol formation: assessing knowledge gaps about precursors and partitioning. Environ. Sci. Technol. 51, 3327–3335.

Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley&Sons.

Shen, X.J., Sun, J.Y., Zhang, X.Y., Zhang, Y.M., Zhang, L., Fan, R.X., Zhang, Z.X., Zhang, X.L., Zhou, H.G., Zhou, L.Y., Dong, F., Shi, Q.F., 2016. The influence of emission control on particle number size distribution and new particle formation during China's V-Day parade in 2015. Sci. Total Environ. 573, 409–419.

Sun, Y.L., Wang, Z.F., Fu, P.Q., Jiang, Q., Yang, T., Li, J., Ge, X.L., 2013. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ. 77, 927–934.

Tan, T.Y., Hu, M., Li, M.R., Guo, Q.F., Wu, Y.S., Fang, X., Gu, F.T., Wang, Y., Wu, Z.J., 2018. New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions. Sci. Total Environ. 621, 734–743.

Tang, M., Chan, C.K., Li, Y.J., Su, H., Ma, Q., Wu, Z., Zhang, G., Wang, Z., Ge, M., Hu, M., He, H., Wang, X., 2019. A review of experimental techniques for aerosol hygroscopicity studies. Atmos. Chem. Phys. Discuss. 1–130 2019.

Tao, J., Zhang, L., Cao, J., Zhang, R., 2017. A review of current knowledge concerning PM2. 5 chemical composition, aerosol optical properties and their relationships across China. Atmos. Chem. Phys. 17, 9485–9518.

Tao, Y., Murphy, J.G., 2019. The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites. Atmos. Chem. Phys. 19, 9309–9320.

Tie, X.X., Wu, D., Brasseur, G., 2009. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ. Times 43, 2375–2377.

Wang, G.H., Zhang, R.Y., Gomez, M.E., Yang, L.X., Zamora, M.L., Hu, M., Lin, Y., Peng, J.F., Guo, S., Meng, J.J., Li, J.J., Cheng, C.L., Hu, T.F., Ren, Y.Q., Wang, Y.S., Gao, J., Cao, J.J., An, Z.S., Zhou, W.J., Li, G.H., Wang, J.Y., Tian, P.F., Marrero-Ortiz, W., Secrest, J., Du, Z.F., Zheng, J., Shang, D.J., Zeng, L.M., Shao, M., Wang, W.G., Huang, Y., Wang, Y., Zhu, Y.J., Li, Y.X., Hu, J.X., Pan, B., Cai, L., Cheng, Y.T., Ji, Y.M., Zhang, F., Rosenfeld, D., Liss, P.S., Duce, R.A., Kolb, C.E., Molina, M.J., 2016. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. U. S. A. 113, 13630–13635.

Wang, H.T., Ding, J., Xu, J., Wen, J., Han, J.H., Wang, K.L., Shi, G.L., Feng, Y.C., Ivey, C.E., Wang, Y.H., Nenes, A., Zhao, Q.Y., Russell, A.G., 2019a. Aerosols in an arid environment: the role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Sci. Total Environ. 646, 564–572.

Wang, J.D., Zhao, B., Wang, S.X., Yang, F.M., Xing, J., Morawska, L., Ding, A.J., Kulmala, M., Kerminen, V.M., Kujansuu, J., Wang, Z.F., Ding, D.A., Zhang, X.Y., Wang, H.B., Tian, M., Petaja, T., Jiang, J.K., Hao, J.M., 2017a. Particulate matter pollution over China and the effects of control policies. Sci. Total Environ. 584, 426–447.

Wang, T., Xue, L.K., Brimblecombe, P., Lam, Y.F., Li, L., Zhang, L., 2017b. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 575, 1582–1596.

Wang, Y., Zhang, Q.Q., He, K., Zhang, Q., Chai, L., 2013. Sulfate-nitrate-ammonium aerosols over China: response to 2000-2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys. 13, 2635–2652.

Wang, Y.C., Wang, Q.Y., Ye, J.H., Yan, M.Y., Qin, Q.D., Prevot, A.S.H., Cao, J.J., 2019b. A review of aerosol chemical composition and sources in representative regions of China during wintertime. Atmosphere 10, 15.

Wang, Y.Q., Zhang, X.Y., Draxler, R.R., 2009. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from longterm air pollution measurement data. Environ. Model. Software 24, 938–939.

Wang, Z.L., Zhang, H., Zhang, X.Y., 2015. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect. Atmos. Chem. Phys. 15, 3671–3685.

Wen, L., Xue, L.K., Wang, X.F., Xu, C.H., Chen, T.S., Yang, L.X., Wang, T., Zhang, Q.Z., Wang, W.X., 2018. Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy. Atmos. Chem. Phys. 18, 11261–11275.

Wen, L.A., Chen, J.M., Yang, L.X., Wang, X.F., Xu, C.H., Sui, X.A., Yao, L., Zhu, Y.H., Zhang, J.M., Zhu, T., Wang, W.X., 2015. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: the important roles of ammonia and ozone. Atmos. Environ. 101, 294–302.

Wu, L.Y., Sun, J.Y., Zhang, X.Y., Zhang, Y.M., Wang, Y.Q., Zhong, J.T., Yang, Y., 2019. Aqueous-phase reactions occurred in the PM2.5 cumulative explosive growth during the heavy pollution episode (HPE) in 2016 Beijing wintertime. Tellus Ser. B Chem. Phys. Meteorol. 71, 1–15.

Wu, X., Deng, J.J., Chen, J.S., Hong, Y.W., Xu, L.L., Yin, L.Q., Du, W.J., Hong, Z.Y., Dai, N.Z., Yuan, C.S., 2017. Characteristics of water-soluble inorganic components and acidity of PM2.5 in a coastal city of China. Aerosol Air Qual. Res. 17, 2152–2164.

Wu, Z.J., Wang, Y., Tan, T.Y., Zhu, Y.S., Li, M.R., Shang, D.J., Wang, H.C., Lu, K.D., Guo, S., Zeng, L.M., Zhang, Y.H., 2018. Aerosol liquid water driven by anthropogenic inorganic salts: implying its Key role in haze formation over the north China plain. Environ. Sci. Technol. Lett. 5, 160–166.

Xu, D.H., Wang, Y., Zhu, R., 2018. Atmospheric environmental capacity and urban atmospheric load in mainland China. Sci. China Earth Sci. 61, 33–46.

Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., Zhao, Q., 2011. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 11, 5207–5219.

Yao, X.H., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K.B., Ye, B.M., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. Times 36, 4223–4234.

Yao, X.H., Ling, T.Y., Fang, M., Chan, C.K., 2006. Comparison of thermodynamic predictions for in situ pH in PM2.5. Atmos. Environ. 40, 2835–2844.

Yue, D.L., Hu, M., Zhang, R.Y., Wang, Z.B., Zheng, J., Wu, Z.J., Wiedensohler, A., He, L.Y., Huang, X.F., Zhu, T., 2010. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing. Atmos. Chem. Phys. 10, 4953–4960.

Zhang, G., Xu, H.H., Qi, B., Du, R.G., Gui, K., Wang, H.L., Jiang, W.T., Liang, L.L., Xu, W.Y., 2018a. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China. Atmos. Chem. Phys. 18, 1705–1728.

Zhang, L., Sun, J.Y., Shen, X.J., Zhang, Y.M., Che, H., Ma, Q.L., Zhang, Y.W., Zhang, X.Y., Ogren, J.A., 2015a. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China. Atmos. Chem. Phys. 15, 2853–2904.

Zhang, R., Sun, X.S., Shi, A.J., Huang, Y.H., Yan, J., Nie, T., Yan, X., Li, X., 2018b. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Environ. 177, 275–282.

Zhang, R., Wang, G., Guo, S., Zamora, M.L., Ying, Q., Lin, Y., Wang, W., Hu, M., Wang, Y., 2015b. Formation of urban fine particulate matter. Chem. Rev. 115, 3803–3855.

Zhang, T., Cao, J.J., Tie, X.X., Shen, Z.X., Liu, S.X., Ding, H., Han, Y.M., Wang, G.H., Ho, K.F., Qiang, J., Li, W.T., 2011. Water-soluble ions in atmospheric aerosols measured in Xi'an, China: seasonal variations and sources. Atmos. Res. 102, 110–119.

Zhang, Y.L., Cao, F., 2015. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 5, 12.

Zhang, Z.X., Zhang, X.Y., Zhang, Y.M., Wang, Y.Q., Zhou, H.G., Shen, X.J., Che, H.C., Sun, J.Y., Zhang, L., 2017. Characteristics of chemical composition and role of meteorological factors during heavy aerosol pollution episodes in northern Beijing area in autumn and winter of 2015. Tellus Ser. B Chem. Phys. Meteorol. 69, 11.

Zhong, J.T., Zhang, X.Y., Wang, Y.Q., Sun, J.Y., Zhang, Y.M., Wang, J.Z., Tan, K.Y., Shen, X.J., Che, H.C., Zhang, L., Zhang, Z.X., Qi, X.F., Zhao, H.R., Ren, S.X., Li, Y., 2017. Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in beijing in december 2016. J. Meteorol. Res. 31, 809–819.

Zhou, Y., Xue, L.K., Wang, T., Gao, X.M., Wang, Z., Wang, X.F., Zhang, J.M., Zhang, Q.Z., Wang, W.X., 2012. Characterization of aerosol acidity at a high mountain site in central eastern China. Atmos. Environ. 51, 11–20.

Zhou, Y.L., Huang, B., Wang, J.H., Chen, B., Kong, H., Norford, L., 2019. Climate-conscious urban growth mitigates urban warming: evidence from shenzhen, China. Environ. Sci. Technol. 53, 11960–11968.

Zhu, Y.H., Huang, L., Li, J.Y., Ying, Q., Zhang, H.L., Liu, X.G., Liao, H., Li, N., Liu, Z.X., Mao, Y.H., Fang, H., Hu, J.L., 2018. Sources of particulate matter in China: insights from source apportionment studies published in 1987-2017. Environ. Int. 115, 343–357.

Kaynak Göster

324 209

Arşiv
Sayıdaki Diğer Makaleler

An LSTM-based aggregated model for air pollution forecasting

Yue-Shan CHANG, Hsin-Ta CHIAO, Satheesh ABIMANNAN, Yo-Ping HUANG, Yi-Ting TSAI, Kuan-Ming LIN

Occurrence, sources and seasonal variation of PM2.5 carbonaceous aerosols in a water level fluctuation zone in the Three Gorges Reservoir, China

Xi WANG, Fengwen WANG, Ting FENG, Siyuan ZHANG, Zhigang GUO, Peili LUA, Li LIU, Fumo YANG, Jiaxin LIU, Neil L. ROSE

Analysis of long-term (2005–2018) trends in tropospheric NO2 percentiles over Northeast Asia

Gyo-Hwang CHOO, Jeonghyeon SEO, Jongmin YOON, Deok-Rae KIM, Dong-Won LEE

Acidity and inorganic ion formation in PM2.5 based on continuous online observations in a South China megacity

Lingyan WU, Yu jiao WANG, Jianhe Gaiping Zhiqiang Shuguang Lei Shouping Likun Huihui Xiaojing HU ZHANG SHEN LI WANG ZHANG CHENG ZHANG XIA, Gen ZHANG

Black carbon aerosols over a high altitude station, Mahabaleshwar: Radiative forcing and source apportionment

M.P. RAJU, P.D. SAFAI, S.M. SONBAWNE, P.S. BUCHUNDE, G. PANDITHURAI, K.K. DANI

Vertical distribution of particulate matter, black carbon and ultra-fine particles in Stuttgart, Germany

A. SAMAD, U. VOGT, A. PANTA, D. UPRETY

Dynamic three-dimensional distribution of traffic pollutant at urban viaduct with the governance strategy

Ming CAI, Yao HUANG, Zhanyong WANG

Assessment of air quality monitoring networks using an ensemble clustering method in the three major metropolitan areas of Mexico

Tobias STOLZ, Mar a E. HUERTAS, Alberto MENDOZA