A minimum set of ozone precursor volatile organic compounds in an urban environment

Volatile organic compounds (VOCs) were determined using the US EPA TO-15 Method in an urban area of the city of Rio de Janeiro, characterized by a high flux of light and heavy vehicles and an important contribution of biogenic sources due to the proximity of the Tijuca rainforest. Samples were collected in 2015 during four different periods corresponding to the rainy and dry seasons. Multivariate statistical analysis showed that VOC speciation was not seasonally dependent. For each sampling campaign, VOCs were classified using five different criteria: mass abundance, kinetic reactivity (according to its specific reaction coefficient with ·OH) and mechanistic reactivity (MIR, MOIR and EBIR scales). Using Venn diagrams, a minimum group of 14 compounds, which represent the complete set of 52 VOCs, was determined. This reduced group was used to simulate ozone hourly concentrations using the OZIPR box model and the SAPRC chemical mechanism. Maximum ozone values differed by 8% between the complete and minimum group, showing that this reduced group adequately describes the main process of ozone formation. The ozone maximum concentrations were correlated with the ratio of the reactivity-weighted VOCs to NOx, rather than the simple ratio of VOCs to NOx. The proposed method could be extended to other scenarios and shorten the laborious chemical determination of dozens of VOCs.


An, J., Shi, Y., Wang, J., Zhu, B., 2016. Temporal variations of O3 and NOx in the urban background atmsophere of nanjing, East China. Arch. Environ. Contam. Toxicol. 71, 224–234.

An, J., Wang, J., Zhang, Y., Zhu, B., 2017. Source apportionment of volatile organic compounds in an urban environment at the yangtze river delta, China. Arch. Environ. Contam. Toxicol. 72, 335–348.

Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101.

CAFE Directive 2008/50/EC (2017) http://www.ec.europa.eu. Accessed 11 April 2017. Carter, W.P.L., 2010. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 44, 5324–5335.

Carter, W.P.L., Seinfeld, J.H., 2012. Winter ozone formation and VOC incremental reactivities in the upper green river basin of Wyoming. Atmos. Environ. 50, 255–266.

Chan, C.Y., Chan, L.Y., Wang, X.M., Liu, Y.M., Lee, S.C., Zou, S.C., Sheng, G.Y., Fu, J.M., 2002. Volatile organic compounds in a roadside microenvironments of metropolitan Hong Kong. Atmos. Environ. 36, 2047–2339.

Chen, J., Luo, D., 2012. Ozone formation potentials of organic compounds from different emission sources in the South Coast Air Basin of California. Atmos. Environ. 55, 448–455.

Duan, J., Tan, J., Yang, L., Wu, S., Hao, J., 2008. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Res. 88, 25–35.

Finlayson-Pitts, B.J., Pitts, J.N., 2000. Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego: California.

Gery, M.W., Crouse, R.R., 1990. User's Guide for Executing OZIPR. US-EPA, Research Triangle Park. https://www3.epa.gov/scram001/userg/other/ozipr.pdf, Accessed date: 11 April 2017.

Grosjean, E., Rasmussen, R.A., Grsojean, D., 1998. Ambiente levels of gas phase pollutants in Porto Alegre, Brazil. Atmos. Environ. 32, 3371–3379.

Guo, H., Ling, Z.H., Cheung, K., Jiang, F., Wang, D.W., Simpson, I.J., Barletta, B., Meinardi, S., Wang, T.J., Wang, X.M., Saunders, S.M., Balke, D.R., 2013.

Characterization of photochemical pollution at different elevations in mountainous areas in Hong Kong. Atmos. Chem. Phys. 13, 3881–3898.

Halliday, H.S., Thompson, A.M., Kollonige, D.W., Martins, D.K., 2015. Reactivity and temporal variability of volatile organic compounds in the Baltimore/DC region in July 2011. J. Atmos. Chem. 72, 197–313.

IAG USP, 2017. http://www.master.iag.usp.br/. Accessed 11 April 2017.

IBGE, 2010. http://portalgeo.rio.rj.gov.br/bdario. Accessed 11 April 2017.

IBGE, 2017. http://cidades.ibge.gov.br/xtras/perfil.php?codmun=330455. Accessed 11 April 2017.

Kesselmeier, J., Kuhn, U., Wolf, A., Andreae, M.O., Ciccioli, P., Brancaleoni, E., Frattoni, M., Guenther, A., Greenberg, J., De Castro vasconcellos, P., de Oliva, T., Tavares, T., Artaxo, P., 2000. Atmospheric volatile organic compounds (VOC) ata a remote tropical forest site in central Amazonia. Atmos. Environ. 34, 4063–4072.

Lingyu, L., Shaodong, X., Limin, Z., Rongrong, W., Jing, L., 2015. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 113, 247–255.

Martins, E.M., Arbilla, G., 2003. Computer modeling study of ethanol and aldehyde reactivities in Rio de Janeiro urban air. Atmos. Environ. 37, 1715–1722.

Martins, E.M., Bauerfeldt, G.F., de Paula, M., Arbilla, G., 2007. Atmospheric levels of aldehydes and BTEX and their relationship with vehicular fleet changes in Rio de Janeiro urban area. Chemosphere 67, 2096–2103.

Martins, E.M., Nunes, A.C., Corrêa, S.M., 2015. Understanding Ozone Concentrations During Weekdays and Weekends in the Urban Area of the City of Rio de Janeiro. J. Braz. Chem. Soc. 26, 1967–1975.

R Core Team, 2016. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, Accessed date: 11 April 2017.

Rio Weather Forecast, 2017. Weather information for the Olympic and Paralympic Games in Rio de Janeiro. http://inside.fei.org/system/files/RIO%20Weather%20forecast_0. pdf, Accessed date: 11 April 2017.

Rodrigues, F., Milas, I., Martins, E.M., Arbilla, G., Bauerfeldt, G.F., de Paula, M., 2007. Experimental and theoretical study of the air quality in a suburban industrial-residential area in Rio de Janeiro, Brazil. J. Braz. Chem. Soc. 18, 342–351.

Sillman, S., West, J.J., 2009. Reactive nitrogen in Mexico City and its relation to ozoneprecursor sensitivity: results from photochemical models. Atmos. Chem. Phys. 9, 3477–3489.

Silva, C.M., Souza, E.C.C.A., da Silva, L.L., Oliveira, R.L., Arbilla, G., Corrêa, S.M., 2016a. Avaliação da eficiência do método TO-15 para determinação de compostos orgânicos voláteis em condições típicas de ambiente urbano. Quím. Nova 39, 1245–1253.

Silva, C.M., Souza, E.C.C.A., da Silva, L.L., Oliveira, R.L., Corrêa, S.M., Arbilla, G., 2016b. Volatile Organic Compounds in the Atmosphere of the Botanical Garden of the City of Rio de Janeiro: a Preliminary Study. Bull. Environ. Contam. Toxicol. 97, 653–658.

Silva, C.M., da Silva, L.L., Corrêa, S.M., Arbilla, G., 2016c. Kinetic and mechanistic reactivity. Isoprene impact on ozone levels in an urban area near Tijuca Forest, Rio de Janeiro. Bull. Environ. Contam. Toxicol. 97, 781–785.

SMAC, 2016. Secretaria Municipal de Meio Ambiente. Qualidade do Ar na Cidade do Rio de Janeiro. Relatório da Rede MonitorAr-Rio 2011-2012. Rio de Janeiro. 2013. http://www.rio.rj.gov.br/dlstatic/10112/3252594/4114836/ RelatorioMonitorar20112012.pdf, Accessed date: 11 December 2016.

Souza, E.C.C.A., Oliveira, R.L., Arbilla, G., 2016. Isoprene, benzene and toluene levels at the major landmarks of Rio de Janeiro during the 2014 FIFA World Cup. Atmósfera 29, 197–207.

Tonnessen, G.S., 2000. User's Guide for Executing OZIPR Version 2.0. U.S.EPA, North Caroline.

U.S.EPA, 1999a. Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in U.S. Air Collected in Specially-prepared Canisters and Analyzed by Gas Chromatography-mass Spectrometry (GC-MS), 1999. U.S. Environmental Protection Agency. http://www.epa.gov/ttnamti1/files/ambient/ airtox/to-15r.pdf, Accessed date: 11 April 2017.

U.S.EPA, 1999b. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air: Method TO-11A, 1999. U.S. Environmental Protection Agency. https://www3.epa.gov/ttnamti1/files/ambient/airtox/to-11ar.pdf, Accessed date: 11 April 2017.

U.S.EPA, 2017. U.S. Environmental protection agency. https://www3.epa.gov/ttnamti1/ airtox.html. (Accessed 11 April 2017).

Wang, Y., Wang, H., Guo, H., Lyu, X., Cheng, H., Ling, Z., Louie, P.K.K., Simpson, I.J., Meinardi, S., Blake, D.R., 2017. Long term O3-precursor relationships in Hong Kong: field observation and model simulation. Atmos. Chem. Phys. Discuss. http://dx.doi. org/10.5194/acp-2017-235.

Kaynak Göster

1335 597

Sayıdaki Diğer Makaleler

Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China

Nan Jiang, Shasha Yin, Yue GUO, Jingyi Lİ, Panru KANG, Ruiqin Zhang, Xiaoyan TANG

Combined membrane photocatalytic ozonation and wet absorption of elemental mercury


Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment


Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions


Greenhouse gas emission accounting at urban level: A case study of the city of Wroclaw (Poland)

Izabela SÓWKA, Yaroslav BEZYK

A minimum set of ozone precursor volatile organic compounds in an urban environment

Cleyton M. da SİLVA, Luane L. da SİLVA, Sergio M. CORRÊA, Graciela ARBİLLA

Low-cost methodology to estimate vehicle emission factors


A review on nanoparticle dispersion from vehicular exhaust: Assessment of Indian urban environment


Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka

Chi Sing CHAN, Ranasinghege Sampath Aravinda RANASINGHE, Steven Sai Hang HO, Kin Fai HO, Steve Hung Lam YIM, A.G.T. SUGATHAPALA, Shun Cheng LEE, Wing Tat HUNG, Tien YU HUANG, Hong Qi ZHANG

The relation between columnar and surface aerosol optical properties in a background environment

D. SZCZEPANİK, K.M. Markowicz