Yeni Zelanda Tavşanı’ında ön bacak eklemlerinin üç boyutlu kemik modellenmesi: Mikro Bilgisayarlı Tomografi çalışması

Bu çalışmada, deneysel ortopedik çalışmalarda sıklıkla tercih edilen Yeni Zelanda Tavşanı’nda sağlıklı ön bacak eklemlerinin mikro bilgisayarlı tomografi (μBT) tekniği ile elde edilen görüntülerinden 3B dijital modellerinin oluşturulması, modeller üzerinde omuz ile dirsek eklemlerine ait morfometrik ölçümlerin sağlanması ve bu modellerden 3B yazıcılar kullanılarak 3B baskı modellerinin üretilmesi amaçlanmıştır. Çalışmada toplamda 14 adet (7 dişi, 7 erkek) erişkin Yeni Zelanda Tavşanı kullanıldı. Ön bacakları μBT cihazı ile görüntülenip görüntülerden 3B dijital ve baskı modelleri elde edildi. 3B dijital modeller üzerinden omuz ile dirsek eklemlerine ait biyometrik ölçümleri gerçekleştirildi. Dişi ve erkek tavşanlara ait elde edilen veriler istatistiki açıdan değerlendirildi. Kesit kalınlığının düşük ve dedektör kalitesinin yüksek olması sebebiyle 3B eklem modellerindeki anatomik yapı oldukça detaylıydı. Üç boyutlu baskılama işlemi sonucunda üretilen 3B baskı modelleri son derece dayanıklı, kokusuz ve temizdi. 3B baskı modelleri ile 3B dijital modeller arasında herhangi bir anatomik farklılık gözlenmedi. Bu çalışmada laboratuvar tavşanlarına ait elde edilen anatomik ve morfometrik verilerin hem deneysel amaçlı ortopedik girişimlerde bulunan hem de klinik anatomi eğitimlerinde rol alan bilim insanlarına katkı sağlayacağı düşünülmektedir.

Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study

In this study, it was aimed to obtain 3-dimensional (3D) digital and printed models of healthy forelimb joints using micro-computed tomography (µCT) technique in New Zealand Rabbit, which is frequently preferred in experimental orthopedic studies. Moreover, it was aimed to provide morphometric measurements on the shoulder and elbow joints over 3D digital models. A total of 14 adults (7 female, 7 male) New Zealand Rabbits were used in the study. After imaging the forelimbs with the µCT device, 3D digital and printed models were obtained. Biometric measurements of shoulder and elbow joints were performed over 3D digital models and the data obtained from female and male rabbits were evaluated statistically. The anatomical structure on the 3D joint models was very detailed due to the low section thickness and high detector quality. 3D printed models produced as a result of the 3D printing process were quite durable, odorless, and clean. No anatomical differences were observed between 3D printed models and 3D digital models. In this study, it is thought that the anatomical and morphometric data obtained from laboratory rabbits will contribute to scientists take part both in experimental orthopedic intervention and clinical anatomy education.

___

  • 1. Bakıcı C, Akgün RO, Oto Ç (2019): The applicability and efficiency of 3 dimensional printing models of hyoid bone in comparative veterinary anatomy education. Vet Hekim Der Derg, 90, 71-75.
  • 2. Berco M, Rigali PH, Miner RM, et al (2009): Accuracy and reliability of linear cephalometric measurements from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofac, 136, 1-9.
  • 3. Bouxsein ML, Boyd SK, Christiansen BA, et al (2010): Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res, 25, 1468-1486.
  • 4. Brazina D, Fojtik R, Rombova Z (2014): 3D visualization in teaching anatomy. Procedia Soc Behav Sci, 143, 367- 371.
  • 5. Estai M, Bunt S (2016): Best teaching practices in anatomy education: A critical review. Ann Anat, 208, 151-157.
  • 6. Fasel JHD, Aguiar D, Kiss-Bodolay D, et al (2016): Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies. Surg Radiol Anat, 38, 361-367.
  • 7. Freitas EP, Noritomi PY, Silva JVL (2011): Use of Rapid Prototyping and 3D Reconstruction in Veterinary Medicine. In: ME Hoque (Ed), Advanced Applications of Rapid Prototyping Technology in Modern Engineering. InTech, China.
  • 8. Gribel BF, Gribel MN, Frazao DC, et al (2011): Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod, 81, 26-35.
  • 9. Jamali AA, Deuel C, Perreira A, et al (2007): Linear and angular measurements of computer-generated models: Are they accurate, valid, and reliable? Comput Aided Surg, 12, 278-285.
  • 10. Jiang Y, Zhao J, White DL, et al (2000): Micro CT and micro MR imaging of 3D architecture of animal skeleton. J Musculoskel Neuron Interact, 1, 45-51.
  • 11. Jones DG (2019): Three-dimensional printing in anatomy education: Assessing potential ethical dimensions. Anat Sci Educ, 12, 435-443.
  • 12. Keleş A, Alçı̇n H (2015): Mikro bilgisayarlı tomografi ve endodontik araştırmalardaki yeri. Türkiye Klinikleri J Endod-Special Topics, 1, 32-39.
  • 13. Kim M, Huh KH, Yi WJ, et al (2012): Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT. Imaging Sci Dent, 42, 25-33.
  • 14. Labruyere J, Schwarz T (2013): CT and MRI in veterinary patients: an update on recent advances. In Pract, 35, 546- 563.
  • 15. Lagravere MO, Carey J, Toogood RW, et al (2008): Three- dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofac, 134, 112-116.
  • 16. Li F, Liu C, Song X, et al (2018): Production of accurate skeletal models of domestic animals using threedimensional scanning and printing technology. Anat Sci Educ, 11, 73-80.
  • 17. Martini L, Fini M, Giavaresi G, et al (2001): Sheep model in orthopedic research: A literature review. Comp Med, 51, 292- 299.
  • 18. Mitsouras D, Liacouras P, Imanzadeh A, et al (2015): Medical 3D printing for the radiologist. Radiographics, 35, 1965- 1988.
  • 19. Moreira CR, Sales MAO, Lopes PML, et al (2009): Assessment of linear and angular measurements on threedimensional cone- beam computed tomographic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 108, 430-436.
  • 20. Murgitroyd E, Madurska M, Gonzalez J, et al (2015): 3D digital anatomy modelling - Practical or pretty? The Surgeon, 13, 177-180.
  • 21. Naff KA, Craig S (2012): The Domestic Rabbit, Oryctolagus Cuniculus: Origins and History. In: MA Suckow, KA Stevens, PP Wilson (Eds), The Laboratory Rabbit, Guinea Pig, Hamster and Other Rodents. Academic Press, London.
  • 22. Nomina Anatomica Veterinaria (2017): Prepared by the international committes on veterinary gross anatomical nomenclature and authorized by the general assambly of the world association of veterinary anatomists (6th ed.). Hanover, Germany, Ghent, Belgium, Columbia, MO, Rio de Janeiro, Brazil: The Editorial Committee.
  • 23. Özkadı̇f S, Eken E (2015): Contribution of virtual anatomic models to medical education. Atatürk Üniversitesi Vet Bil Derg, 10, 46-54.
  • 24. Özkadı̇f S, Eken E, Beşoluk K, et al (2015): Threedimensional reconstruction of New Zealand rabbit antebrachium by multidetector computed tomography. Iran J Vet Res, 16, 205-209.
  • 25. Pazvant G, Kahvecı̇oğlu KO (2009): Tavşanlarda ön ve arka bacak uzun kemiklerinin homotipik varyasyonları üzerinde araştırmalar. İstanbul Üniv Vet Fak Derg, 35, 23- 39.
  • 26. Preece D, Williams SB, Lam R, et al (2013): “Let’s Get Physical”: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat Sci Educ, 6, 216-224.
  • 27. Pujol S, Baldwin M, Nassiri J, et al (2016): Using 3D modeling techniques to enhance teaching of difficult anatomical concepts. Acad Radiol, 4, 507-516.
  • 28. Remzi OA, Caner B, Okan E, et al (2019): Accuracy and Reliability of Measurements Obtained from 3-Dimensional Rabbit Mandible Model: A Micro-Computed Tomography Study. Acta Vet-Beograd, 69, 192-200.
  • 29. Rengier F, Mehndiratta A, Tengg-Kobligk H, et al (2010): 3D printing based on imaging data: review of medical applications. Int J Cars, 5, 335-341.
  • 30. Ventola CL (2014): Medical applications for 3D printing: Current and projected uses. Pharm Ther, 39, 704-711.
  • 31. Von Den Driesch A (1976): A Guide to the Measurement of Animal Bones from Archaeological Sites. Pea Body Museum Bulletin 1. Harward University, Massachusetts.
Ankara Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • Yayın Aralığı: 4
  • Başlangıç: 1954
  • Yayıncı: Ankara Üniversitesi Veteriner Fakültesi
Sayıdaki Diğer Makaleler

Broiler karkaslarında Salmonella Typhimurium'un kitosan ve laktik asit ile dekontaminasyonu

Erhan KEYVAN, Erdi ŞEN, Özen YURDAKUL, Zeynep KAPLAN

Behavioural assessment of three chicken genotypes under free-range, semi-intensive, and intensive housing systems

Sohail AHMAD, Athar MAHMUD, Jibran HUSSAIN, Khalid JAVED, Muhammad USMAN, Muhammad WAQAS, Muhammad ZAID

Progressive respiratory distress caused by a laryngeal histiocytic sarcoma in a European rabbit (Oryctolagus cuniculus)

Cosmin MUREȘAN, Cristina Alexa LELESCU, Marian TAULESCU, Teodoru SOARE, Corina TOMA, Andrada NEGOESCU

Türkiye'de Covid-19 pandemisinin hayvansal ürün ve yem fiyatlarına kısa süreli etkisi

Aytaç AKÇAY, Savaş SARIÖZKAN, Mehmet KÜÇÜKOFLAZ, Güven GÜNGÖR

Honamlı ve Kıl keçisi (Capra hircus) mandibula’sı; geometrik morfometrik bir çalışma

Yasin DEMİRASLAN, Özcan ÖZGEL, İftar GÜRBÜZ, Özlem ZÜMRE

Propolisin sulu ve etanol ekstresinin antimikrobiyal ve anti-çoğunluk algılama aktivitesinin belirlenmesi

Özgür CEYLAN, Ali SORUCU

Bir kedide tam uterus prolapsusu

Murat FINDIK, Firdevs BİNLİ, Fatih BÜYÜKBUDAK, İpek İNAN, Serhan Serhat AY

Yumurtacı tavuklarda kafes tipi, yumurtlama zamanı ve yumurta depolama süresinin yumurta kalite özelliklerine etkileri

Esin Ebru ONBAŞILAR, Ines TABIB, Suzan YALÇIN

Süt sığırlarında enerjice düzeltilmiş süt veriminin genomik tahmin ve ilişki analizleri

Burak KARACAÖREN

Rumen fizyolojisi: mikroorganizmaları, fermantasyonu ve manipülasyonu

Hakan ÖZTÜRK, Gürsel GÜR