Optogenetic strategies for the treatment of neurodegenerative diseases

Optogenetic strategies for the treatment of neurodegenerative diseases

Optogenetic tools and strategies, as an innovative approach to control neurodegenerative diseases, have been developed inrecent years with the application of a combination of optical and genetic techniques on a certain group of cells of living tissue. With this technique, a particular cell type and their predefined pathway can be controlled precisely. The basic steps ofthis optogenetics include discovery and placing of light-sensitive molecules into cells to provide optical control and applications in animal experiments. Strategies for suppressing neurons are based on activation of light-sensitive prokaryotic membrane proteins that act as ion channels and transporters. Optogenetic strategies that are adapted clinically have the capacity to provide temporal, regional and cellular specific delivery in ways that no other treatment may suggest. Engineering channelrhodopsin (CR) molecule and its expression are very important in terms of optogenetic experiments. Because experimentsconducted with conventional CR are not suitable for testing chronic long-term studies, there is a certain need for a controlledmedium for optogenetic neurodegenerative disease experiments.

___

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond- timescale, genetically targeted optical control of neu- ral activity. Nat Neurosci 2005;8:1263-8.
  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 2003;100:13940-5.
  • Lin JY. A user's guide to channelrhodopsin variants: features, lim- itations and future developments. Exp Physiol 2011;6:19-25.
  • Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007;27: 14231-8.
  • Lin JY, Lin MZ, Steinbach P, Tsien RY. Characterization of engi- neered channelrhodopsin variants with improved properties and kinetics. Biophys J 2009;96:1803-14.
  • Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P. Ultrafast optogenetic control. Nat Neurosci 2010; 13:387-92.
  • Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner TG. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci USA 2011;108:7595-600.
  • Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann, P, Deisseroth K. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 2008;11:631-3.
  • Govorunova EG, Spudich EN, Lane CE, Sineshchekov OA, Spudich JL. New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. MBio 2011;2:e00115- 11.
  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K. Neocortical excitation/inhibition balance in infor- mation processing and social dysfunction. Nature 2011;477:171-8.
  • Schobert B, Lanyi JK. Halorhodopsin is a light-driven chloride pump. J Biol Chem 1982;257:10306-13.
  • Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature 2007;446:633-9.
  • Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007;27: 14231-8.
  • Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010;141:154-65.
  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010;463:98-102.
  • Yamamoto K, Tanei Z, Hashimoto T, Wakabayashi T, Okuno H, Naka Y, Yizhar O, Fenno LE, Fukayama M, Bito H, Cirrito JR, Holtzman DM, Deisseroth K, Iwatsubo T. Chronic optogenetic activation augments A? pathology in a mouse model of Alzheimer disease. Cell Rep 2015;11: 859-65.
  • Maher MP, Pine J, Wright J, Tai YC. The neurochip: a new mul- tielectrode device for stimulating and recording from cultured neurons. J Neurosci Methods 1999;87:45-56.
  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural cir- cuitry. Science 2009;324:354-9.
  • Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G. In vivo light-induced activa- tion of neural circuitry in transgenic mice expressing channel- rhodopsin-2. Neuron 2007;54:205-18.
  • Tomita H, Sugano E, Fukazawa Y, Isago H, Sugiyama Y, Hiroi T, Ishizuka T, Mushiake H, Kato M, Hirabayashi M, Shigemoto R, Yawo H, Tamai M. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 2009;4:e7679.
  • Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L, Wang D, Zhang F, Boyden E, Deisseroth K, Kasai H, Hall WC, Feng G, Augustine GJ. High-speed mapping of synaptic connec- tivity using photostimulation in channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 2007;104:8143-8.
  • Chuhma N, Tanaka KF, Hen R, Rayport S. Functional connec- tome of the striatal medium spiny neuron. J Neurosci 2011;31:1183-92.
  • Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G. Cell type-spe- cific channelrhodopsin-2 transgenic mice for optogenetic dissec- tion of neural circuitry function. Nat Methods 2011;8:745-52.
  • Gradinaru V, Thompson KR, Deisseroth K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applica- tions. Brain Cell Biol 2008;36:129-39.
  • Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, Yang A, Baratta MV, Winkle J, Desimone R, Boyden ES. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 2011;5:18.
  • Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009;459:698-702.
  • Benzekhroufa K, Liu BH, Teschemacher AG, Kasparov S. Targeting central serotonergic neurons with lentiviral vectors based on a transcriptional amplification strategy. Gene Ther 2009; 16:681-8.
  • Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, L Deisseroth K. Optogenetic interrogation of neural cir- cuits: technology for probing mammalian brain structures. Nat Protoc 2010;5:439-56.
  • Feil S, Valtcheva N, Feil R. Inducible Cre mice. Methods Mol Biol 2009;530:343-63.
  • Marks WJ Jr, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, Vitek J, Stacy M, Turner D, Verhagen L, Bakay R, Watts R, Guthrie B, Jankovic J, Simpson R, Tagliati M, Alterman R, Stern M, Baltuch G, Starr PA, Larson PS, Ostrem JL, Nutt J, Kieburtz K, Kordower JH, Olanow CW. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol 2010;9:1164-72.
  • Campagnola L, Wang H, Zylka MJ. Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing chan- nelrhodopsin-2. J Neurosci Methods 2008;169:27-33.
  • Bernstein JG, Han X, Henninger MA, Ko EY, Qian X, Franzesi GT, McConnell JP, Stern P, Desimone R, Boyden ES. Prosthetic systems for therapeutic optical activation and silencing of geneti- cally-targeted neurons. Proc SPIE Int Soc Opt Eng 2008;6854: 68540H.
  • Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ. Optical properties of selected native and coagu- lated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 2002;47:2059-73.
  • Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 2007;4:S143-56.
  • Huber D, Petreanu L, Ghitani N, Ranade S, Hromádka T, Mainen Z, Svoboda K. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 2008;451:61-4.
  • Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron 2011;71:9-34.
  • Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV. An optogenetic tool- box designed for primates. Nat Neurosci 2011;14:387-97.
  • Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS, Fenno LE, Ramakrishnan C, Deisseroth K. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 2010;465:788-92.
  • Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, Yang A, Kopell N, Buckner RL, Graybiel AM, Moore CI, Boyden ES. Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 2011;105:1393-405.
  • Han X, Qian X, Bernstein JG, Zhou HH, Franzesi GT, Stern P, Bronson RT, Graybiel AM, Desimone R, Boyden ES. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 2009;62:191-8.
  • Nathanson JL, Jappelli R, Scheeff ED, Manning G, Obata K, Brenner S, Callaway EM. Short promoters in viral vectors drive selective expression in mammalian inhibitory neurons, but do not restrict activity to specific inhibitory cell-types. Front Neural Circuits 2009;3:19.
  • Maher MP, Pine J, Wright J, Tai YC. The neurochip: a new mul- tielectrode device for stimulating and recording from cultured neurons. J Neurosci Methods 1999;87:45-56.
Anatomy-Cover
  • ISSN: 1307-8798
  • Yayın Aralığı: 3
  • Başlangıç: 2007
  • Yayıncı: Deomed Publishing