SUCUL MODEL ORGANİZMALAR VE BİYOTEKNOLOJİDE KULLANIMI

Model organizmalar; in vitro koşullarda üretilen ve üretiminin sürdürülmesi kolay olan, kısa jenerasyon aralığına sahip, deneysel avantajları olan ve biyolojik olayların araştırılmasında kullanılan canlılardır. İnsan genomu ile karşılaştırıldığında homolojisi oldukça yüksek ancak genom boyu küçük olan model organizmalar insan üzerinde çalışılması mümkün olmayan her türlü deneyde kullanılabilirler. Son yıllarda zebra balığı (Danio reiro), medaka balığı (Oryzias latipes) ve balon balığı (Fugu rubripes) gibi bazı sucul canlılar model organizma olarak kullanılmaktadır. Bu derlemede sucul model organizmalar ve biyoteknolojik çalışmalarda kullanım alanları hakkında bilgiler sunulmuştur.

SUCUL MODEL ORGANİZMALAR VE BİYOTEKNOLOJİDE KULLANIMI

Model organizmalar; in vitro koşullarda üretilen ve üretiminin sürdürülmesi kolay olan, kısa jenerasyon aralığına sahip, deneysel avantajları olan ve biyolojik olayların araştırılmasında kullanılan canlılardır. İnsan genomu ile karşılaştırıldığında homolojisi oldukça yüksek ancak genom boyu küçük olan model organizmalar insan üzerinde çalışılması mümkün olmayan her türlü deneyde kullanılabilirler. Son yıllarda zebra balığı (Danio reiro),, medaka balığı (Oryzias latipes) ve balon balığı (Fugu rubripes) gibi bazı sucul canlılar model organizma olarak kullanılmaktadır. Bu derlemede sucul model organizmalar ve biyoteknolojik çalışmalarda kullanım alanları hakkında bilgiler sunulmuştur. AQUATIC MODEL ORGANISMS AND THEIR USE IN BIOTECHNOLOGY Model organisms are preferable species to study biological phenomena due to their features that they can be produced in vitro easily and maintained continuously and they have short generation intervals and some experimental advantages. Compared to human genome, model organisms, which have very high homology and small genome size, can be used in experiments that have been impossible to study on human beings. In recent years, aquatic model organisms such as zebra fish (Danio reiro), medaka fish (Oryzias latipes) and puffer fish (Fugu rubripes) are used as model organism. In this review, information on aquatic model organisms and their utilitiy in biotechnological researches are presented.

___

  • Angerer, L.M., Angerer, R.C. 2003. Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions. Curr. Top. Dev. Biol., 53:159-198.
  • Anonim, 2012. Genom Dizisi Tamamlanan Küçük Bir Model Organizma: Daphnia pulex. Available from URL: http://www.biyoportal.com/portal/haberler/zooloji/60genom-dizisi-tamamlanan-kuecuek-bir-modelorganizma-daphnia-pulex.html [Ulaşım: 26.03.2012].
  • Ankeny, R.A. 2001. Model Organisms as Models: Understanding the ‘Lingua Franca’ of the Human Genome Project. Philos. Sci.,68:251-261.
  • Ankeny, R.A. 2006. Wormy Logic: Model Organisms as Case-Based Reasoning. Working Papers on The Nature of Evidence: How Well Do ‘Facts’ Travel?No. 07/06.
  • Arda, M. 1995. Biyoteknoloji (Bazı Temel İlkeler). KÜKEM Derneği Bilimsel Yay. 3, Ankara.
  • Bacher, G., Nickel, B., Emig, P., Vanhoefer, U., Seeber, S., Shandra, A., Klenner, T., Beckers T. 2001. D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows efficacy toward multidrug-resistant tumor cells, and lacks neurotoxicity. Cancer Res., 61:392-399.
  • Bailey, G.S. 1994. Role of aflatoxin-DNA adducts in the cancer process. The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance. Academic Press, p: 137–147.
  • Bailey, G.S.,Williams, D.E., Hendricks, J.D. 1996. Fish models for environmental carcinogenesis: the rainbow trout. Environ. Health Perspect., 104: 5–21.
  • Brand, M., Granato, M, Nusslein-Volhard, C. 2002. ‘‘Keeping and raising zebrafish ’’. In: Zebrafish: A Practical Approach, Nusslein- Volhard C, Dahm R, (eds.). Oxford: Oxford University Press, p: 7-37.
  • Braun, R. 2002. People’s Concerns About Biotechnology: Some Problems and Some Solutions. J. Biotechnol., 98: 3–
  • Bray, D. 2001. Cell Movements: From Molecules to Motility, 2nd ed. Garland Publishing, New York.
  • Breinholt, V., Hendricks, J., Pereira, C., Arbogast, D., Bailey, G.S. 1995. Dietary chlorophyllin is a potent inhibitor of aflatoxin B1 hepatocarcinogenesis in rainbow trout. Cancer Res., 55: 57–62.
  • Brenner, S., Elgar, G., Sandford, R., Macrae, A., Venkatesh, B., Aparicio, S. 1993. Characterization of the pufferfish (fugu) genome as a compact model vertebrate genome. Nature, 366: 265–268.
  • Carpio, Y., Estrada, M.P. 2006. Zebrafish as a Genetic Model organism. Biotecnol. Apl.,23: 4.
  • Chesne, P., Adenot, P.G., Viglietta, C., Baratte, M., Boulanger, L., Renard, J-P. 2002. Cloned Rabbits Produced by Nuclear Transfer from Adult Somatic Cells. Nature Biotechnol., 70: 366-369.
  • Colbourne, J.K., Pfrender, M.E., Gilbert, D., Thomas, W.K. et al. 2011. The Ecoresponsive Genome of Daphnia pulex. Science, 331: 555-561.
  • Collins F.S.,Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L. 1998. New Goals for the U.S. Human Genome Project: 1998-2003. Science, 282:6826
  • Crnogorac-Jurcevic, T., Brown, J.R., Lehrach, H., Schalkwyk, L.C. 1997. Tetraodon fluviatilis, a new puffer fish model for genome studies. Genomics, 41: 177–184.
  • Correia, A.D., Freitas, S., Lamoree, M.H., Booij, P., Scholze, M., Mañanós, E., Reis-Henriques, M.A. 2004. Sea bass (Dicentrarchus labrax) - a model organism for the screening of estrogenic chemicals in marine surface waters? Society of Environmental Toxicology and Chemistry - SETAC Europe 14th Annual Meeting, April 2004, Prague, Czech Republic, Czihak, G. 1973. The Sea Urchin Embryo Biochemistry and Morphogenesis. Springer, New York.
  • Çavaş, T. 2004.Endüstriyel Atıkların Genotoksik Etkilerinin Mikronükleus ve AgNOR Analiz Teknikleri Kullanılarak in-Situ ve Laboratuvar Koşulları Altında Araştırılması. Doktora Tezi. MÜ Fen Bil.Enst. Mersin.
  • Dahm, R. 2002. Atlas of embryonic stages of development in the zebrafish’. In: Zebrafish: A Practical Approach, Nusslein-Volhard C, Dahm R, (eds.). Oxford: Oxford University Press, p: 219-236.
  • Ekinci, M.S., Akyol, İ., Karaman, M., Özköse, E. 2005. Hayvansal Biyoteknoloji Uygulamalarında Güncel Gelişmeler. KSÜ Fen ve Mühendislik Dergisi, 8(2).
  • Erdoğan O., Aksakal E., 2008. Moleküler Biyoloji Veritabanları ve Kullanımları. Su Ürünlerinde Uygulamalı Moleküler Biyoloji Teknikleri, Atatürk Üniversitesi Ziraat Fakültesi Ders Yayınları No: 237, s: 37Ergene, S., Kaya, F., Pekcan, Y., Oral, A. 1998. A Karyological Analysis of Oreochromis niloticus (L., 1758) (Pisces, Cichlidae) Used in Aquaculture, First International Symposium on Fisheries and Ecology, 110: 2-4, Trabzon.
  • Fong, A.T., Dashwood, R.H., Cheng, R., Mathews, C., Ford, B., Hendricks, J.D., Bailey, G.S. 1993. Carcinogenicity, metabolism and Ki-ras proto-oncogene activation by 7,12-dimethylbenz[a]anthracene in rainbow trout embryos. Carcinogenesis, 14: 629–635.
  • Gijs, A.K., Harry, A.K. 2002. Considerations for the Assessment of the Safety of Genetically Modified
  • Animals Used for Human Food or Animal Feed. Livestock Produc. Sci., 74: 275-285. Gilmour, D.T., Jessen, J.R., Lin, S. 2002.Manipulating gene expression in the zebrafish. In: Zebrafish: A Practical Approach, Nusslein-Volhard C, Dahm R, (eds.). Oxford: Oxford University Press, p: 121-43.
  • Giudice, G. 1973. Developmental Biology of the Sea Urchin Embryo. Academic Press, New York.
  • Giudice, G. 1986. The Sea Urchin Embryo. A Developmental Biological System. SpringerVerlag, Berlin.
  • Gustafson, T.,Wolpert, L. 1963. The cellular basis of morphogenesis and sea urchin development. Int. Rev. Cytol.,15:139-214.
  • Hedges, S.B. 2002. The Origin and Evolution of Model Organisms. Nature Rev.,3: 838-849.
  • Hendricks, J.D., Meyers, T.R., Casteel, J.R., Nixon, J.E., Loveland, P.M., Bailey, G.S., 1984. Rainbow trout embryos: advantages and limitations for carcinogenesis research. Natl. Cancer Inst. Monogr., 65: 129–137.
  • Hendricks, J.D., Meyers, T.R., Shelton, D.W., Casteel, J.L., Bailey, G.S. 19 Hepatocarcinogenicity of benzo[a]pyrene to rainbow trout by dietary exposure and intraperitoneal injection. J. Natl. Cancer Inst., 74: 839– 8 Hendricks, J.D., Shelton, D.W., Loveland, P.M., Pereira, C.B., Bailey, G.S. 1995.Carcinogenicity of dietary dimethylnitrosomorpholine, N-methyl-N′-nitroNnitrosoguanidine, and dibromoethane in rainbow trout. Toxicol. Pathol., 23: 447–457.
  • Hinegardner, R., Rosen, D.E. 1972. Cellular DNA content and the evolution of teleostean fishes. Am. Nat., 106:621–644.
  • Himmelbauer, H.,Dunkel, I., Otto, G.W., Burgtorf, C., Schalkwyk, L.C., Lehrach, H. 1998. Complex probes for high-throughput parallel genetic mapping of genomic mouse BAC clones. Mamm. Genome, 9: 611–619.
  • Iwamatsu, T. 1994. Stages of normal development in the medaka Oryzias latipes. Zool. Sci., 11: 825–839.
  • Jordan, A., Hadfield, J.A., Laurence, N.J., McGown, A.T. 19 Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med. Res. Rev.,18:259-296. Kappes, S.M. 1999. Utilization of Gene Mapping Information in Livestock Animals. Theriogenology, 51: 135-1
  • Kelly, J.D., Orner, G.A., Hendricks, J.D., Williams, D.E. 19 Dietary hydrogen peroxide enhances hepatocarcinogenesis in trout: correlation with 8hydroxy-2′-deoxyguanosine levels in liver DNA. Carcinogenesis, 13: 1639–1642.
  • Knoll, A.H., Carroll, S.B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284: 2129–2137.
  • Korkina, L.G., Deeva, I.B., De Biase, A., Iaccarino, M., Oral, R., Warnau, M., Pagano, G. 2000. Redoxdependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis. Carcinogenesis, 21:2132
  • Könen S., 2007. Trifluralin ve Askorbik Asit Kombinasyonlarının Oreochromis nilotıcus Üzerindeki Genotoksik ve Antigenotoksik Etkilerinin Mikronükleus Testi Kullanılarak Araştırılması. Yüksek Lisans Tezi, MÜFen Bil. Enst. Mersin.
  • Ladurner, P., Scha¨rer, L., Salvenmoser, W., Rieger, R.M. 200 A new model organism among the lower Bilateria and the use of digital microscopy in taxonomy of meiobenthic Platyhelminthes: Macrostomum lignano, n. sp. (Rhabditophora, Macrostomorpha). JZS, 43(2): 114– 1 Lallier, R. 1980. Biological properties of cis- and transdichlorodiamineplatinum. Cell. Biol. Int. Rep., 4:697700.
  • Lyson, T.A. 2002. Advanced Agricultural Biotechnologies and Sustainable Agriculture. TRENDS in Biotechnol., 20: 193-196.
  • Ma, C., Parng, C.L., Seng, W.L., Zhang, C., Willett, C., McGrath, P. 2003. Zebrafish: an in vivo model for drug screening. Innov. Pharmaceut Tech.,38-45.
  • Maier, D., Marte, B.M., Schaefer, W., Yu, Y., Preiss, A. 19 Drosophila evolution challenges postulated redundancy in the E(spl) gene complex. Proc. Natl Acad. Sci. USA, 90: 5464–5468.
  • Nishioka, D., Marcell, V., Cunningham, M., Khan, M., Von Hoff, D.D., Izbicka, E. 2003. The use of early sea urchin embryos in anticancer drug testing. Methods Mol. Med., 85:265-276.
  • Nunez, O., Hendricks, J.D., Fong, A.T. 1990. Interrelationships among aflatoxin B1 (AFB1) metabolism, DNA-binding, cytotoxicity, and hepatocarcinogenesis in rainbow trout Oncorhynchus mykiss. Dis. Aquat. Organ., 9: 15–23.
  • Pelegri F., 2002. ‘‘Mutagenesis’’. In: Zebrafish: A Practical Approach, Nusslein-Volhard C, Dahm R, (eds.). Oxford: Oxford University Press, p: 145-74.
  • Pintado, B., Gutierrez-Adan, A. 1999. Transgenesis in Large Domestic Species: Future Development for Milk Modification. Reprod. Nutr. Dev., 39: 535–544.
  • Sala, E., Zabala, M. 1996. Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the N W Mediterranean. Mar. Ecol. Prog. Ser., 141: 71
  • Sconzo, G., Romancino, D., Fasulo, G., Cascino, D., Giudice, G. 1995. Effect of doxorubicin and phenytoin on sea urchin development. Pharmazie, 50:616-619.
  • Shubin, N., Tabin, C., Carroll, S. 1997. Fossils, genes and the evolution of animal limbs. Nature, 388: 639–648.
  • Semenova, M.N., Kiselyov, A., Semenov, V.V. 2006. Sea urchin embryo as a model organism for the rapid functional screening of tubulin modulators. BioTechniques, 40:765-774.