Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions

Hydraulic conductivity is an important indicator of water movement and pore structure in soil. Therefore, it is important to determine soil physical and hydraulic properties under different land use conditions. The present study was comducted under three different landuse; dry farming (D), irrigated land (I) and pastureland (P). Three samples were colected from each field (9 samples in total). Infiltration measurements were also tested at each sampling point in each field. The results of this study showed that although hydraulic conductivity was not significantly differentt under dry and irrigated agricultural lands, significant differences were observed between the pastureland and the tilled areas. Soil water infiltration was positively correlated with soil organic matter, aggregate stability and hydraulic conductivity, whereas infiltration was negatively correlated with bulk density. The lowest infiltration rate was found under pastureland compare to those are the highest under the irrigated lands. Therefore, increasing the organic matter content of the local soils will make significant contributions to sustainable soil management.

___

Agyare, W.A., Vlek, P.L.G., Dikau, R., Andreini, M., and Fosu, M., 2005. Soil Characterization and Modeling using Pedo-Transfer Functions and Artificial Neural Networks. Status Conference, Cologne, Germany, May 17-19.

Aksakal, E.L., 2004. Soil Compaction and Its Importance for Agriculture, J. of Agricultural Faculty of Atatürk Univ., 35(3-4): 247-252.

Anonoymus, 2019a. http://www.bigadic.gov.tr/geographic situation

Anonoymus, 2019b. https://www.mgm.gov.tr /data evaluation /province and districts statistics .aspx?m=BALIKESIR

Arshad, M., and Martin, S., 2002. Identifying Critical Limits for Soil Quality Indicators. Agriculture, Ecosystems & Environment, 88(2): 153-160.

Balesdent, J., Chenu, C. and Balabane, M., 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil & Tillage Research. 53(3-4): 215-230.

Barik, K., 2011. Effects of Barnyard Manure and Beet Pulp Addition on Some Soil Properties. J. of Agricultural Faculty of Atatürk Univ., 42(2): 133-138.

Barik, K., Aksakal E., Islam K.R., Sari S., and Angin I., 2014. Spatial variability in soil compaction properties associated with field traffic operations, Catena 120: 122-133.

Blake, G.R., and Hartge, K.H., 1986. Particle Density in Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (Ed. A, Klute). American Society of Agronomy, Madison, Wisconsin, USA.

Boadu, F.K., 2000. Hydraulic conductivity of soils from grainsize distribution: new models. J. Geotech. Geoenviron. Eng., 126(8): 739-746.

Canbolat, M., and Demiralay, İ., 1995. The relationship among aggregate stability, bulk density of briquet, modulus of rupture of organic material added soils. Soil Science Society of Turkey. Soil and Environment Symposium. Vol. 2 pp: A-116 A-124, Ankara.

Danielson, R.E., and Sutherland, P.L., 1986. Porosity. Methods of soil analysis. Part 1. Physical and mineralogical methods, 443-461.

Dao, T.H., 1993. Tillage and Winter Wheat Residue Management Effects on Water Infiltration and Storage. Soil. Sci. Soc. Am. J. 57: 1586-1595.

Demiralay, İ., 1993. Soil Physical Analysis Methods. Ataturk Univ. Agricultural Faculty Publications. Erzurum, 111- 120.

Edwards, W.M., 1982. Predicting tillage effects on infiltration. ASA, CSSA, SSSA Books. ASA Special Publications 44: 105-115.

Erşahin, S., 2001. Toprak Amenajmanı. GOÜ Ziraat Fakültesi Ders Notları Serisi No: 21: 44-57.

Gee, G.W., and Bauder, J.W., 1986. Particle-Size Analysis. Methods of Soil Analysis.Part 1. Physical and Mineralogical Methods. 2nd Edition. Agronomy No: 9. 383-411.

Gülser, C., Candemir, F., İç, S., and Demir, Z., 2007. Pedotransfer Modellerle İnce Bünyeli Topraklarda Doygun Hidrolik İletkenliğin Tahmini. V. Ulusal Hidroloji Kongresi, Bildiriler Kitabı, 5-7 Eylül, ODTÜ Ankara, p. 563-569.

Hawkes, G.E., Powlson, D.S., Randall, E.W., and Tate, K.R., 1984. Nuclear Magnetic Resonance Study of the Phosphorus Species in Alkali Extracts of Soils from Longterm Field Experiments. J. Soil Sci, 35: 35–45.

Hussen, A.A., 1991. Measurement of Unsaturated Hydraulic Conductivity in the Field, Ph.D. dissertation,150 pp., Univ.of Ariz., Tucson.

Hussen, A.A., and Warrick, A.W., 1993. AlgebrASc Models for Disc Tension Permeameters, Water Resour.Res, 29: 2779-2786.

Ishaku, J.M., Gadzama, E.W. and Kaigama, U., 2011. Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis. Journal of Geology and Mining Research, 3(4): 105-113.

Karahan, G., and Erşahin, S., 2016. Predicting saturated hydraulic conductivity using soil morphological properties. Eurasian J Soil Sci., 5(1): 30 – 38.

Kemper, W.D., and Rosenau, R.C., 1986. Aggregate Stability and Size Distribution. Methods of Soil Analysis.Part 1. Physical and Mineralogical Methods. 2nd Edition. Agronomy No: 9: 425-442.

McLean, E.O., 1982. Soil Hand Lime Requirement. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2. Edition P: 199- 224.

Nelson, D.W., and Sommers, L. E., 1982. Organic Matter. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2. Edition P: 574- 579.

Nelson, R.E., 1982. Carbonate and Gypsum. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2. Edition P: 191- 197.

Osunbıtan, J.A., Oyedele D. J., and Adekolu K. O., 2005. Tillage Effects on Bulk Density, Hydraulic Conductivity and Strength of a Loamy Sand Soil in Soutwestern Nigerya. Soil 8 Tillage Research, 82:57-64.

Özdemir, N., Öztürk, E., and Durmuş, K.Ö.T., 2018. Organik Düzenleyici Uygulamalarının Yapay Yağış Koşullarında Toprakların Bazı Fiziksel Özellikleri ve Toprak Kaybı Arasındaki İlişkiler Üzerine Etkileri. Turk J Agric Res. 5(3): 191-200.

Öztekin, T., and Erşahin, S., 2006. Saturated hydraulic conductivity variation in cultivated and virgin soils. Turk J. Agric. For. 30: 1-10.

Öztekin, T., Cemek, B., and Brown, L.C., 2007. Pedotransfer Functions for the Hydraulic Properties of Layered Soils GOÜ. Ziraat Fakültesi Dergisi. 24(2): 77-86.

Rosas, J., Lopez, O., Missimer, T.M., Coulibaly, K.M., Dehwah, A.H.A., Sesler, K., Lujan, L.R., and Mantilla, D., 2014.

Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Groundwater, 52(3): 399–413.

Sezen, Y., 2002. Toprak Verimliliği. Atatürk üniversitesi Yayınları No: 922. Ziraat fakültesi Yayınları No: 339. Ders Kitapları Serisi 86, Erzurum.

Schwartz, F.W., and Zhang, H., 2003. Fundamentals of Groundwater. John Wiley & Sons, Inc., p. 583.

Six, J., Conant, R.T., Paul, E.A., and Paustian, K., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils J. Plant and Soil 241: 155-176.

SPSS, 1999. SPSS for Windows, Release 10.0.5., SPSS Inc., USA. Tümsavaş, Z., 2003. Bursa İli Vertisol Büyük Toprak Grubu Topraklarının Verimlilik Durumlarının Toprak Analizleriyle Belirlemnesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 17(2): 9-21.

Tüzüner, A., 1990. Toprak Ve Su Analiz Laboratuvarları El Kitabı. Tarım Orman ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Ankara.

Ülgen, N., ve Yurtsever, N., 1974. Türkiye gübreler ve gübreleme rehberi. Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü, Teknik Yayınlar No:28. Ankara.
Alınteri Zirai Bilimler Dergisi-Cover
  • ISSN: 2564-7814
  • Başlangıç: 2007
  • Yayıncı: Adem Yavuz SÖNMEZ