Otomotiv ömür testlerinin Arrhenius yöntemiyle hızlandırılması, Elektrikli güç aktarma sistemleri üzerine deneysel bir çalışma

Otomotiv testleri, araca ait herhangi bir bileşeni, sistemi veya komple aracı, arzu edilen seviyede olduğunu ispat veya regulasyonlara uygun olduğunudan emin olmak için sanal, laboratuvar, stant veya gerçek kullanım koşullarında değerlendirmeden geçirmektir. Otomotiv testleri, ürün geliştirme için hayati süreçlerden biridir ve küresel otomotiv pazarlarına erişim için bir gerekliliktir. Testlerin ana hedefi, ürünün muhtemel uyumsuzluğunu yaşam döngüsünün erken aşamalarında ortaya çıkarmaktır. Testlerin aynı zamanda “güvenilir”, “tekrarlanabilir”, “düşük maliyetli” ve “çevre dostu” olması arzu edilir. Bu çalışmada, hafif hibrit bir araca ait elektrikli güç sisteminin müşteri koşullarında öngörülen ömür yeterliliği değerlendirilmiştir. Ömür testini daha güvenilir ve tekrarlanabilir yapmak için testler Arrhenius yöntemiyle hızlandırılmış ve sentetik bir kullanım verisi yerine gerçek sürüş verileri kullanılmıştır. Öngörülen bu yöntem, gerçek koşulları uygulayabilen, CAN-Bus simülasyonu ve yüksek ortam sıcaklığı sağlayabilen bir test standı üzerinde denenmiştir. Geliştirilen test standı ve uygulanan yöntem sayesinde, gerçek koşullar altında elektrikli güç sisteminin ömür testi gerçekleştirilmiş, test süresi 4,65 kat hızlandırılarak zaman ve maliyeti avantajı sağlanmıştır.

___

  • ABB HDP Series motor (t.y.), ABB Resmi web sitesi, Erişim : 11 Mart 2021. https://library.e.abb.com/public/bf34eb257bd6facdc1257b130056e9da/HDP%20Series%20AC%20Induction%20Servomotors-Rev12.pdf,
  • ABB ACS800 driver (t.y.), ABB Resmi web sitesi, Erişim : 11 Mart 2021. https://library.e.abb.com/public/445b5e20e72624afc1257b2400493e68/EN_ACS800_11_HW_C_screen.pdf
  • Bloomberg (2018), New Energy Finance report : Electric Buses in Cities, Driving Towards Cleaner Air and Lower CO2, Bloomberg Finance L.P. Yayın tarihi 2018.
  • Bormanis O. ve Ribickis L. (2018), Accelerated Life Testing in Reliability Evaluation of Power Electronics Assemblies, 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 2018, pp. 1-5. Carlson, Lohse-Busch, Duoba, ve Shidore, (2009), Drive cycle fuel Consumption variability of plug-in hybrid electric vehicle due to aggressive driving, SAE Technical Paper, http://papers.sae.org/2009-01-1335/
  • Chiodo E., Lauria, Andrenacci N. ve Pede G. (2016), Accelerated life tests of complete lithium-ion battery systems for battery life statistics assessment, 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Anacapri, 2016, pp. 1073-1078.
  • Citaro (t.y.), Citaro Hybrid Technology, Erişim : 11 Kasım 2019, https://landtransportguru.net/mercedes-benz-citaro-hybrid/.
  • Dhillon B. S. (2006), Maintainability, Maintenance and Reliability for Engineers. Boca Raton, FL, USA: CRC Press.
  • Ebeling C. E. (1997), An Introduction to Reliability and Maintainability Engineering. New York, NY, USA: McGraw-Hill.
  • Gaonkar A., R. B. Patil, S. Kyeong, D. Das and M. G. Pecht (2021), An Assessment of Validity of the Bathtub Model Hazard Rate Trends in Electronics, in IEEE Access, vol. 9, pp. 10282-10290, 2021, doi: 10.1109/ACCESS.2021.3050474.
  • Geller, B. M., ve Bradley, T. H., (2015), Analyzing Drive Cycles for Hybrid Electric Vehicle Simulation and Optimization. ASME. J. Mech. Des. Nisan; 137(4): 041401. https://doi.org/10.1115/1.4029583
  • ISO (t.y.) International Organization for Standardization, ISO 26262-1:2018, Road vehicles-Functional safety, Erişim : 17 Kasım 2021, https://www.iso.org/standard/68383.html.
  • Karabasoglu O., ve, Michalek J., (2013), Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains, Energy Policy, Sayı 60, Sayfa 445-461, ISSN 0301-4215, https://doi.org/10.1016/j.enpol.2013.03.047.
  • Kaymaz H., Korkmaz H., Erdal H., (2019), Characteristic Driving Parameters of BRT Istanbul and Evaluation of Hybridization/ Electrification Potential, 1. Uluslararası Akıllı Ulaşım Sistemleri Konferansı, 19-21 Nisan 2019, Bandırma
  • Kentved A. B. (2011) Acceleration factors and accelerated life testing, A guide based on practical experiences, SPM Report No:179, Scandinavia.
  • Korkmaz H., Kaymaz H., Erdal H., (2019), Development of a driving cycle for Istanbul bus rapid transit based on real-world data using stratified sampling method, Transportation Research Part D: Transport and Environment, Volume 75, , Pages 123-135, https://doi.org/10.1016/j.trd.2019.08.023.
  • MBN (2013), Mercedes-Benz Company Standard, General Requirements, LV 124 Test Conditions and Tests for Electric and Electronic Components in Motor Vehicles Part 2: Environmental Requirements (intern document)
  • Mercedes Citaro (t.y.), Mercedes Benz Citaro Hybrid Technology, Erişim : 01 Kasım 2021, https://www.mercedes-benz-bus.com/en_GB/models/citaro-hybrid/efficiency/hybrid-technology.html.
  • MpiCON (t.y.), Industrial Controllers, Erişim : 23 Kasım 2021, https://mpicon.com/controller/industrial-controller/
  • NIST/Sematech (2013). e-Handbook of Statistical Methods, Department of Commerce, U.S. https://doi.org/10.18434/M32189
  • OICA (t.y.) Uluslararası Motorlu Taşıt Üreticileri Birliği, Erişim: 11 Ocak 2022, https://www.oica.net/
  • Özbay, H. , Közkurt, C. , Dalcalı, A. Tektaş, M. (2020). Geleceğin Ulaşım Tercihi: Elektrikli Araçlar, Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi , 3 (1) , 34-50. https://dergipark.org.tr/tr/pub/jitsa/issue/53369/712337
  • Qi B., Sun Y., Hu W. ve Ding X., (2011), A multi-stress Accelerated Life Tests method for Smart Electricity Meter based upon the Life-Stress Model, The Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, Guiyang, 2011, pp. 1136-1140.12
  • Schwarzer V., ve Ghorbani R., (2013), Drive cycle generation for design optimization of electric vehicles. IEEE Transactions on Vehicular Technology, Sayı 62, Sayfa :89-97, http://dx.doi.org/10.1109/TVT.2012.2219889
  • Tekcan A. T., Kahramanoğlu G., Yatır M. N., Kirişken B., Gündüzalp M. (2011), Saha Geri Dönüş Oranını AR-GE Aşamasında İndikatör ile Tahmin Etme Yöntemi, EMO Bilimsel Dergi, Cilt 1, Sayı 2, Syf 67-74, Aralık 2011
  • Vector CANoe (t.y.), Erişim : 22 Nisan 2021, https://www.vector.com/int/en/products/products-a-z/software/canoe/
  • Zaccardi J. ve Le Berr F., (2013), Analysis and choice of representative drive cycles for light duty vehicles - case study for electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Sayı 227 Sayfa 605-616, http://dx.doi.org/10.1177/0954407012454964