Analytical studies on the global existence and blow-up of solutions for a free boundary problem of two-dimensional diffusion equations of moving fractional order

Analytical studies on the global existence and blow-up of solutions for a free boundary problem of two-dimensional diffusion equations of moving fractional order

This paper particularly addresses and discusses some analytical studies on the existence and uniqueness of global or blow-up solutions under the traveling profile forms for a free boundary problem of two-dimensional diffusion equations of moving fractional order. It does so by applying the properties of Schauder's and Banach's fixed point theorems. For application purposes, some examples of explicit solutions are provided to demonstrate the usefulness of our main results.

___

  • Y. Arioua, B. Basti and N. Benhamidouche, Initial value problem for nonlinear implicit fractional differential equations with Katugampola derivative, Appl. Math. E-Notes, 19 (2019), 397--412.
  • B. Basti, Y. Arioua and N. Benhamidouche, Existence and uniqueness of solutions for nonlinear Katugampola fractional differential equations, J. of Math. and Applications, 42 (2019), 35--61.
  • B. Basti, Y. Arioua and N. Benhamidouche, Existence results for nonlinear Katugampola fractional differential equations with an integral condition, Acta Mathematica Universitatis Comenianae, 89 (2020), 243--260.
  • B. Basti and N. Benhamidouche, Existence results of self-similar solutions to the Caputo-type's space-fractional heat equation, Surveys in Mathematics and its Applications, 15 (2020), 153--168.
  • B. Basti and N. Benhamidouche, Global existence and blow-up of generalized self-similar solutions to nonlinear degenerate diffusion equation not in divergence form, Appl. Math. E-Notes, 20 (2020), 367--387.
  • N. Benhamidouche, Exact solutions to some nonlinear PDEs, travelling profiles method, Electronic Journal of Qualitative Theory of Differential Equation 15 (2008), 1--7.
  • [1] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integral and Derivatives (Theory and Applications), Gordon and Breach, Switzerland, 1993.
  • [2] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.
  • [3] A.A. Kilbas, H.H. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.
  • [4] K. Diethelm, The Analysis of Fractional Differential Equations, Springer Berlin, 2010.
  • [5] A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Equation, Chapman&Hall/CRC, Boca Raton (2004).
  • [6] B. Basti and N. Benhamidouche, Existence results of self-similar solutions to the Caputo-type's space-fractional heat equation, Surv. Math. Appl., 15 (2020), 153-168.
  • [7] E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl. 227(1) (1998), 81-97.
  • [8] Y. Luchko and R. Gorenfl, Scale-invariant solutions of a partial differential equation of fractional order, Fract. Calc. Appl. Anal. 1(1) (1998), 63-78.
  • [9] R. Metzler and T.F. Nonnemacher, Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chem. Phys. 284 (2002), 67-90.
  • [10] F. Nouioua and B. Basti, Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions, Ann. Univ. Paedagog. Crac. Stud. Math. 20 (2020), 43-56.
  • [11] L. Vázquez, J.J. Trujillo and M.P. Velasco, Fractional heat equation and the second law of thermodynamics, Fract. Cal. Appl. Anal. 14 (2011), 334-342.
  • [12] Y. Arioua, B. Basti and N. Benhamidouche, Initial value problem for nonlinear implicit fractional differential equations with Katugampola derivative, Appl. Math. E-Notes, 19 (2019), 397-412.
  • [13] B. Basti, Y. Arioua and N. Benhamidouche, Existence and uniqueness of solutions for nonlinear Katugampola fractional differential equations, J. Math. Appl., 42 (2019), 35-61.
  • [14] B. Basti, Y. Arioua and N. Benhamidouche, Existence results for nonlinear Katugampola fractional differential equations with an integral condition, Acta Math. Univ. Comenian., 89(2) (2020), 243-260.
  • [15] B. Basti, N. Hammami, I. Berrabah, F. Nouioua, R. Djemiat, N. Benhamidouche, Stability analysis and existence of solutions for a modified SIRD model of COVID-19 with fractional derivatives, Symmetry, 13(8) (2021), 1431.
  • [16] B. Basti and N. Benhamidouche, Global existence and blow-up of generalized self-similar solutions to nonlinear degenerate diffusion equation not in divergence form, Appl. Math. E-Notes, 20 (2020), 367-387.
  • [17] N. Benhamidouche, Exact solutions to some nonlinear PDEs, travelling profiles method, Electron. J. Qual. Theory Differ. Equ. 15 (2008), 1-7.
  • [18] E.M.E. Zayed, Traveling wave solutions for higher dimensional nonlinear evolution equations using the (G'/G)-expansion method, J. of appl. math. & informatics 28 (2010), 383-395.
  • [19] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
Advances in the Theory of Nonlinear Analysis and its Application-Cover
  • Başlangıç: 2017
  • Yayıncı: Erdal KARAPINAR
Sayıdaki Diğer Makaleler

An extended radius of convergence comparison between two sixth order methods under general continuity for solving equations

Samundra REGMİ, Ioannis K. ARGYROS, Santhosh GEORGE, Christopher ARGYROS

Some new equivalents of the Brouwer fixed point theorem

Sehie PARK

Analytical studies on the global existence and blow-up of solutions for a free boundary problem of two-dimensional diffusion equations of moving fractional order

Rabah DJEMİAT, Bilal BASTI, Noureddine BENHAMİDOUCHE

On the integration of first order nonlinear differential equations and the conditions of Fuchs' theorem

Arezki KESSİ, Toufik LAADJ, Moussa YAHİ

On An Existential Question for Strictly Decreasing Convergent Sequences

Jen-yuan CHEN, Wei-shih DU

Generalized Shehu Transform to $\Psi$-Hilfer-Prabhakar Fractional Derivative and its Regularized Version

Sachın MAGAR, Ahmed HAMOUD, Amol KHANDAGALE, Kirtiwant GHADLE

Multiple Nonnegative Solutions for a Class of Fourth-Order BVPs Via a New Topological Approach

Salim BENSLİMANE, Svetlin GEORGİEV, Karima MEBARKİ

Stability of a nonlinear fractional pseudo-parabolic equation system regarding fractional order of the time

Nguyen Duc PHUONG, Le Dinh LONG, Tuan NGUYEN ANH, Ho BİNH

Numerical Construction of Lyapunov Functions Using Homotopy Continuation Method

Alhassan IBRAHİM, Saminu I BALA, Idris AHMED, Muhammad Jamilu IBRAHİM, Fahd JARAD

Properties of Certain Volterra type ABC Fractional Integral Equations

Deepak PACHPATTE, Juan NİETO