Saf Alzheimer Demansı ile Epileptik Alzheimer Demansı Hastaları Arasındaki Faklı Metabolik ve Klinik Profiller: Metabolik bir çalışma

Amaç: Epileptik Alzheimer hastalarının klinik özelliklerini ve serebral FDG PET metabolizmalarını araştırmak ve saf Alzheimer demansı hastaları ile arasındaki farkları karşılaştırmaktır.Yöntemler: Bu vaka-kontrol çalışmasına Alzheimer hastalığı olan 7 hastadan oluşan control grubu ve Alzheimer hastalığına eşlik eden epilepsisi olan 7 hastadan oluşan çalışma grubu olmak üzere toplam 14 hasta dahil edildi. Tüm katılımcılara ayrıntılı nörobilişsel bateri ve beyin florodeoksiglukoz pozitron emisyon tomografisi (FDG PET-CT) uygulandı.Bulgular: Nörobilişsel test puanları karşılaştırıldığında, çalışma ve kontrol grupları arasında anlamlı bir fark yoktu. Ancak geriatrik depresyon ölçeği puanları çalışma grubunda kontrollere göre anlamlı derecede düşüktü (p= 0.026). Çalışma grubundaki olguların serebral FDG-PET BT profillerinde sol ve sağ serebellum, sol lentiform nükleus, sağ talamus ve vermiste anlamlı düzeyde daha düşük metabolizma saptadık (p=0,008, p=0,023, p=0,003, p=0,002, p =0,002, sırasıyla). Sağ parietotemporal korteks ve sağ ve sol birleştirici görsel kortekste, çalışma grubunda kontrollere göre daha yüksek metabolizma bulduk (sırasıyla p=0.023, p=0.012, p=0.003).Sonuç: Alzheimer demansı olan epileptik hastalar, saf Alzheimer hastalarından farklı klinik ve metabolik profile sahip olabilir. Hastaların nörokognitif klinik skorlarında fark olmasa bile depresyon ve ilişkili fonksiyonel anormallikler epileptik AD hastaları için bir biyobelirteç olabilir.

Different metabolic and clinical profiles between patients with pure Alzheimer dementia and epileptic Alzheimer dementia: a metabolic study

Aim: To investigate the clinical characteristics and cerebral FDG PET metabolisms of dementia patients who were also diagnosed with epilepsy and compare the differences with pure Alzheimer dementia patients.

___

  • 1. Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017;16(4):311-322. doi: 10.1016/S1474-4422(17)30044-3.
  • 2. Breteler MM, van Duijn CM, Chandra V, Fratiglioni L, Graves AB, Heyman A et al. Medical history and the risk of Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int J Epidemiol. 1991;20 Suppl 2:36-42. doi: 10.1093/ije/20.supplement_2.s36.
  • 3. Sen A, Capelli V, Husain M. Cognition and dementia in older patients with epilepsy. Brain. 2018;141(6):1592-1608. doi: 10.1093/brain/awy022.
  • 4. Subota A, Pham T, Jette´ N, Sauro K, Lorenzetti D, Holroyd-Leduc J. The association between dementia and epilepsy: a systematic review and meta-analysis. Epilepsia 2017; 58: 962–72. doi: 10.1111/epi.13744.
  • 5. Diniz BS, Butters MA, Albert SM, Dew MA, Reynolds CF 3rd. Late-life depression and risk of vascular dementia and Alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. Br J Psychiatry. 2013;202(5):329-35. doi: 10.1192/bjp.bp.112.118307.
  • 6. Green RC, Cupples LA, Kurz A, Auerbach S, Go R, Sadovnick D et al. Depression as a risk factor for Alzheimer disease: the MIRAGE Study. Arch Neurol. 2003;60(5):753-9. doi: 10.1001/archneur.60.5.753.
  • 7. Modrego, P.J., Ferrández, J. Depression in patients with mild cognitive impairment increases the risk of developing dementia of Alzheimer type: a prospective cohort study. Arch. Neurol. 2004;61:1290-1293. https://doi.org/10.1001/archneur.61.8. 1290
  • 8. Panza, F., Frisardi, V., Capurso, C., D’Introno, A., Colacicco, A.M., Imbimbo et al. Late-life depression, mild cognitive impairment, and dementia: possible continuum? Am. J. Geriatr. Psychiatry 2010;18:98-116. https://doi.org/10.1097/JGP. 0b013e3181b0fa13
  • 9. Rapp, M.A., Schnaider-Beeri, M., Grossman, H.T., Sano, M., Perl, D.P., Purohit et al. Increased hippocampal plaques and tangles in patients with Alzheimer disease with a lifetime history of major depression. Arch. Gen. Psychiatry 2006;63:161. https://doi.org/10.1001/archpsyc.63.2.161.
  • 10. Rapp, M.A., Schnaider-Beeri, M., Purohit, Perl D.P., Haroutunian, V., Sano M. Increased neurofibrillary tangles in patients with Alzheimer disease with comorbid depression. Am. J. Geriatr. Psychiatry 2008;16:168–174. https://doi.org/10.1097/ JGP.0b013e31816029ec.
  • 11. Kita Y, Baba H, Maeshima H, Nakano Y, Suzuki T, Arai H. Serum amyloid beta protein in young and elderly depression: a pilot study. Psychogeriatrics. 2009;9(4):180-5. doi: 10.1111/j.1479-8301.2009.00293.x.
  • 12. Qiu, W.Q., Sun, X., Selkoe, D.J., Mwamburi, D.M., Huang, T., Bhadela, R. et al. Depression is associated with low plasma Abeta42 independently of cardiovascular disease in the homebound elderly. Int. J. Geriatr. Psychiatry 2007;22:536–542. https://doi.org/10. 1002/gps.1710.
  • 13. Galts CPC, Bettio LEB, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS et al. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev. 2019;102:56-84. doi: 10.1016/j.neubiorev.2019.04.002.
  • 14. Caraci, F., Copani, A., Nicoletti, F., Drago, F. Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur. J. Pharmacol. 2010;626:64–71. https://doi.org/10.1016/j.ejphar.2009.10.022.
  • 15. Leverenz J.B., Agustin C. M., Tsuang D., Peskind E.R., Edland S.D., Nochlin D et al. Clinical and Neuropathological Characteristics of Hippocampal Sclerosis. Arch Neurol. 2002;59:1099-1106. doi: 10.1001/archneur.59.7.1099.
  • 16.. Sacuiu, S., Insel, P.S., Mueller, S., Tosun, D., Mattsson, N., Jack, C.R et al. Chronic depressive symptomatology in mild cognitive impairment is associated with frontal atrophy rate which hastens conversion to Alzheimer dementia. Am. J. Geriatr. Psychiatry 2016;24:126–135. https://doi.org/10.1016/j.jagp.2015.03.006.
  • 17. Sexton, C.E., Allan, C.L., Le Masurier, M., McDermott, L.M., Kalu, U.G., Herrmann, L.L et al. Magnetic resonance imaging in late-life depression: multimodal examination of network disruption. Arch. Gen. Psychiatry 2012;69:680–689. https://doi.org/10.1001/archgenpsychiatry.2011.
  • 18. Laakso MP, Soininen H, Partanen K, Helkala EL, Hartikainen P, Vainio P et al. Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer’s disease: correlation with memory functions. J Neural Transm Park Dis Dement Sect. 1995;9(1):73-86. doi: 10.1007/BF02252964.
  • 19. Wang, L, Zang, Y, He, Y, Liang, M., Zhang, X., Tian, L et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 2006;31:496–504. https://doi.org/10. 1016/j.neuroimage.2005.12.033.
  • 20. Anand, A, Li, Y, Wang, Y, Lowe, MJ., Dzemidzic, M. Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res. Neuroimaging 2009;171:189–198. https://doi.org/10.1016/j. pscychresns.2008.03.012.
  • 21. Rosenberg, P.B., Nowrangi, M.A., Lyketsos, C.G.Neuropsychiatric symptoms in Alzheimer’s disease: what might be associated brain circuits? Mol. Aspects Med. 2015;43:25–37. https://doi.org/10.1016/j.mam.2015.05.005.
  • 22. Leo A, Tallarico M, Sciaccaluga M, Citraro R, Costa C. Epilepsy and Alzheimer’s Disease: Current Concepts and Treatment Perspective on Two Closely Related Pathologies. Curr Neuropharmacol. 2022;20(11):2029-2033. doi: 10.2174/1570159X20666220507020635.
  • 23. Holmes GL. Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord. 2015;17(2):101-16. doi:10.1684/epd.2015.0739.
  • 24. Lotan E, Friedman KP, Davidson T, Shepherd TM. Brain 18F-FDG-PET: Utility in the Diagnosis of Dementia and Epilepsy. Isr Med Assoc J. 2020;22(3):178-184. PMID: 32147984.
  • 25. Yulug B, Kilic E, Altunay S, Ersavas C, Orhan C, Dalay A, et al. Cinnamon Polyphenol Extract Exerts Neuroprotective Activity in Traumatic Brain Injury in Male Mice. CNS Neurol Disord Drug Targets. 2018;17(6):439-447. doi:10.2174/1871527317666180501110918.