Toz Metalurjisi Yöntemiyle Mg-Sn Alaşımı Üretimi ve Karakterizasyonu

Magnezyum alaşımları özellikle düşük yoğunlukları ve yüksek spesifik dayanımları nedeniyle günden güne daha geniş alanlarda kullanım imkanı bulmaktadır. Bu alaşımların endüstriyel uygulamalarda daha yüksek oranda kullanımının önündeki en büyük engel hegzagonal sıkı paket olan kristal kafes yapısından dolayı geleneksel yöntemlerle plastik deformasyon işlemlerinin zor olmasıdır. Bu zorlukların üstesinden gelmek için kullanılabilecek yöntemlerden biri toz metalurjisi (TM) ile üretimdir. Bu çalışmada ticari olmayan bir tozmetal magnezyum alaşımı toz metalurjisi yöntemiyle geliştirilmiş ve geliştirilen alaşımın mikroyapısal özellikleri incelenmiştir. Çalışma sonucunda magnezyuma yapılan Sn ilavesi ile tane boyutunda ve dolayısıyla sertlik değerlerinde yükselme tespit edilmiştir. Ayrıca magnezyuma yapılan Sn ilavesi ile Mg2Sn fazının oluştuğu görülmüştür. Kalay ilavesi ile daha düşük sıcaklıklarda yapılan sinterleme işlemlerinde yüksek yoğunluk değerlerine ulaşılabildiği tespit edilmiştir.

Development and Characterization of Mg-Sn Powder Metallurgy Alloy

Magnesium alloys have received increasing attention due to their low density and high specific strength. Magnesium has hexagonal closed packet crystal structure at all temperatures and therefore it is very difficult to give shape to the magnesium by using conventional plastic deformation methods. One of the methods that can be used to overcome this poor deformability problem is using powder metallurgy. In this study, a non-commercial powder metal magnesium alloy was developed and the properties of the alloy were investigated. It has been observed that the addition of Sn to magnesium decreased the grain size and hence increased the hardness values. Also formation of the Mg2Sn phase contributed to the achievement of the higher hardness values. It was determined that the addition of tin makes it possible to reach the higher density values even by sintering conducted at the lower temperatures.

___

  • [1]B. L. Mordike and T. Ebert, “Magnesium Properties - applications - potential,” Mater. Sci. Eng. A, vol. 302, no. 1, pp. 37–45, 2001.
  • [2]I. Polmear, D. StJohn, J.-F. Nie, and M. Qian, “The Light Metals,” in Light Alloys, 5th ed., Boston: Elsevier, 2017, pp. 1–29.
  • [3]K. S. Yoshiki-Gravelsins, J. M. Toguri, and R. T. C. Choo, “Metals production, energy, and the environment, part I: Energy consumption,” JOM, vol. 45, no. 5, pp. 15–20, May 1993.
  • [4]C. l. Mendis and A. Singh, “Magnesium Recycling: To the Grave and Beyond,” JOM, vol. 65, no. 10, pp. 1283–1284, Oct. 2013.
  • [5]G. Yarkadaş, L. C. Kumruoğlu, and H. Şevik, “The effect of Cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy,” Mater. Charact., vol. 136, no. November 2017, pp. 152–156, Dec. 2018.
  • [6]G. Germen, G. Yarkadaş, and H. Şevik, “Influence of strontium addition on the wear behavior of Mg-3Al-3Sn alloys produced by gravity casting,” Mater. Test., vol. 57, no. 11–12, pp. 997–1000, Nov. 2015.
  • [7]I. P. Moreno, T. K. Nandy, J. W. Jones, J. E. Allison, and T. M. Pollock, “Microstructural characterization of a die-cast magnesium-rare earth alloy,” Scr. Mater., vol. 45, no. 12, pp. 1423–1429, 2001.
  • [8]A. Gökçe, F. Fındık, and A. O. Kurt, “Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri - Powder Metallurgy Processing of Aluminum Alloys,” Engineer&Machinery, vol. 58, no. 686, pp. 21–47, 2017.
  • [9]R. M. German, Sintering: from Empirical Observations to Scientific Principles, no. October. California: Elsevier, 2014.
  • [10]R. Tandon and D. Madan, “Emerging Applications Using Magnesium Alloy Powders: A Feasibility Study,” in Magnesium Technology 2014, M. Alderman, M. V Manuel, N. Hort, and N. R. Neelameggham, Eds. Cham: Springer International Publishing, 2014, pp. 21–25.
  • [11]A. Gökçe, F. Findik, and A. O. Kurt, “Effects of Sintering Temperature and Time on the Properties of Al-Cu PM Alloy,” Pract. Metallogr., vol. 54, no. 8, pp. 533–551, 2017.
  • [12]R. M. German, A - Z of Powder Metallurgy. Michigan: Elsevier, 2005.
  • [13]S. K.R, M. S, M. S. K. Kara, and A. L, “Influence of Powder Composition & Morphology on Green Density for Powder Metallurgy Processes,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 04, no. 01, pp. 18629–18634, Jan. 2015.
  • [14]J. K. Thompson, W. Li, S. J. Park, A. Antonyraj, R. M. German, and F. Findik, “Utilisation of silicon rubber to characterise tool surface quality during die compaction,” Powder Metall., vol. 52, no. 3, pp. 238–243, Sep. 2009.
  • [15]R. M. German, Particulate Composites. Cham: Springer International Publishing, 2016.
  • [16]P. Burke and G. J. Kipouros, “Development of magnesium powder metallurgy AZ31 alloy using commercially available powders,” High Temp. Mater. Process., vol. 30, no. 1–2, pp. 51–61, 2011.
  • [17]D. W. Heard, I. W. Donaldson, and D. P. Bishop, “Metallurgical assessment of a hypereutectic aluminum-silicon P/M alloy,” J. Mater. Process. Technol., vol. 209, no. 18–19, pp. 5902–5911, 2009.
  • [18]A. Ibrahim, D. P. Bishop, and G. J. Kipouros, “Sinterability and characterization of commercial aluminum powder metallurgy alloy Alumix 321,” Powder Technol., vol. 279, pp. 106–112, 2015.
  • [19]G.S. Upadhyaya, “Sintered metallic and ceramic materials — preparation, properties and applications,” Mater. Des., vol. 22, no. 4, Jun. 2001.
  • [20]A. Gökçe, F. Findik, and A. O. Kurt, “Effects of Mg content on aging behavior of Al4CuXMg PM alloy,” Mater. Des., vol. 46, pp. 524–531, 2013.
  • [21]G. E. Dieter and D. J. Bacon, Mechanical metallurgy, vol. 3. McGraw-Hill New York, 1986.
  • [22]R. M. German, Liquid Phase Sintering. Boston, MA: Springer US, 1985.
  • [23]R. M. German, P. Suri, and S. J. Park, “Review: Liquid phase sintering,” J. Mater. Sci., vol. 44, no. 1, pp. 1–39, 2009.
  • [24]R. M. German and J. W. Dunlap, “Processing of iron-titanium powder mixtures by transient liquid phase sintering,” Metall. Trans. A, vol. 17, no. 2, pp. 205–213, Feb. 1986.
  • [25]M. Wolff, C. Blawert, M. Dahms, and T. Ebel, “Properties of Sintered Mg Alloys for Biomedical Applications,” Mater. Sci. Forum, vol. 690, pp. 491–494, 2011.
  • [26]H. Yao, Y. Li, and A. T. Wee, “An XPS investigation of the oxidation/corrosion of melt-spun Mg,” Appl. Surf. Sci., vol. 158, no. 1–2, pp. 112–119, May 2000.
  • [27]Z. Y. Liu, T. B. Sercombe, and G. B. Schaffer, “The effect of particle shape on the sintering of aluminum,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 38, no. 6, pp. 1351–1357, 2007.
  • [28]P. Burke, G. J. Kipouros, D. Fancelli, and V. Laverdiere, “Sintering Fundamentals of Magnesium Powders,” Can. Metall. Q., vol. 48, no. 2, pp. 123–132, 2014.
  • [29]M. S. Syaza Nabilla, C. D. Zuraidawani, and M. N. Derman, “Fabrication and Characterization of Different Ca Content in Mg-Ca Composite Using Powder Metallurgy Technique,” Mater. Sci. Forum, vol. 819, pp. 309–313, 2015.
  • [30]A. Gökçe, F. Findik, and A. O. Kurt, “Microstructural examination and properties of premixed Al-Cu-Mg powder metallurgy alloy,” Mater. Charact., vol. 62, no. 7, pp. 730–735, 2011.
  • [31]S. Cai, T. Lei, N. Li, and F. Feng, “Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys,” Mater. Sci. Eng. C, vol. 32, no. 8, pp. 2570–2577, Dec. 2012.