Elektrokoagülayon Yöntemiyle Reaktif Yellow 160 Boyar Maddesinin Giderimi

Demir ve alüminyum elektrotlar ile donatılmış elektrokoagülasyon prosesinin (EP) kullanıldığı çalışmada Reaktif Yellow 160 (RY160) boyarmaddesi giderimi üzerine başlangıç pH, akım yoğunluğu, iletkenlik ve elektroliz süresinin etkisi incelenmiştir. EP’de elektrot materyalinden bağımsız olarak yüksek renk giderim verimi elde edilmiştir. Optimum işletme şartları alüminyum elektrot kullanılması durumunda, pH = 5, akım yoğunluğu 100 A/m2, elektroliz süresi 10 dakika, iletkenlik 1000 µS/cm iken demir elektrot kullanılması durumunda pH = 7, akım yoğunluğu 200 A/m2, elektroliz süresi 5 dakika, iletkenlik 1000 µS/cm olarak belirlenmiştir. Renk giderim verimi alüminyum elektrot çifti için 2,3 kWsa/m3 enerji sarfiyatı ve 0,52 $/m3 toplam maliyetle %96,4 iken demir elektrot çifti için 1,7 kWsa/m3 enerji sarfiyatı ve 0,28 $/m3 toplam maliyetle %95,8 elde edilmiştir. Sonuçlar, demir elektrot kullanımının alüminyum elektrot ile karşılaştırıldığında RY160 boyarmaddesinin gideriminde daha ekonomik olduğunu göstermiştir.

Decolorization of Reactive Yellow 160 Dye by Using Electrocoagulation

The effect of initial pH, current density, conductivity and electrolysis time on Reactive Yellow 160 (RY160) dye removal was investigated by using electrocoagulation process (EC) equipped with iron and aluminum electrodes couple. High color removal efficiency was obtained independent of electrode materials in EC. Optimum operational conditions was determined as pH = 5, current density 100 A /m2, electrolysis time 10 min and conductivity 1000 μS / cm for aluminum electrodes while it was pH = 7, current density 200 A/m2, electrolysis time 5 min and conductivity 1000 μS/cm for iron electrodes. Color removal was 96.4% with 2.3 kWh/m3 energy consumption and 0.52 $/m3 operating cost for aluminum electrode while it was 95.8% with 1.7 kWh/m3 energy consumption and 0,28 $/m3 operating cost for iron electrode. The results show that, iron electrodes are more cost effective than aluminum electrodes in removal of RY160 dye.

___

  • M. A. Al-Ghouti, M. A. M. Khraisheh, S. J. Allen, and M. N. Ahmad, “The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth,” J. Environ. Manage., vol. 69, no. 3, pp. 229–238, 2003.
  • Y. Gunes, R. Atav, and O. Namirti, “Effectiveness of ozone in decolorization of reactive dye effluents depending on the dye chromophore,” Text. Res. J., vol. 82, no. 10, pp. 994–1000, 2011.
  • J. Blanco, F. Torrades, M. Morón, M. Brouta-Agnésa, and J. García-Montaño, “Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: Feasibility of reuse in dyeing processes,” Chem. Eng. J., vol. 240, pp. 469–475, 2014.
  • Y. K. Ong, F. Y. Li, S. P. Sun, B. W. Zhao, C. Z. Liang, and T. S. Chung, “Nanofiltration hollow fiber membranes for textile wastewater treatment: Lab-scale and pilot-scale studies,” Chem. Eng. Sci., vol. 114, pp. 51–57, 2014.
  • F. Ciner, S. K. A. Solmaz, T. Yonar, and G. E. Ustun, “Treatability studies on wastewater from textile dyeing factories in Bursa, Turkey,” Int. J. Environ. Pollut., vol. 19, no. 4, pp. 403–407, 2003.
  • Y. Uysal, D. Aktas, and Y. Caglar, “Determination of Colour removal efficiency of Lemna minor L. from industrial effluents,” J. Environ. Prot. Ecol., vol. 15, no. 4, pp. 1718–1726, 2014.
  • Z. Aksu and G. Dönmez, “Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis,” Process Biochem., vol. 40, no. 7, pp. 2443–2454, 2005.
  • H. S. RAI, M. S. BHATTACHARYYA, J. SINGH, T. K. BANSAL, P. VATS, and U. C. BANERJEE, “Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques With Reference to Biological Treatment,” Crit. Rev. Environ. Sci. Technol., vol. 35, no. 3, pp. 219–238, 2005.
  • H. Kocyigit and A. Ugurlu, “Biological decolourization of reactive azo dye by anaerobic/aerobic sequencing batch reactor system,” Glob. NEST J., vol. 17, no. X, pp. 1–10, 2015.
  • S. Ozdemir, K. Cirik, D. Akman, E. Sahinkaya, and O. Cinar, “Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor,” Bioresour. Technol., vol. 146, pp. 135–143, 2013.
  • C. S. D. Rodrigues, L. M. Madeira, and R. A. R. Boaventura, “Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process,” Environ. Technol., vol. 34, no. 6, pp. 719–729, 2013.
  • [12] V. Golob, A. Vinder, and M. Simonič, “Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents,” Dye. Pigment., vol. 67, no. 2, pp. 93–97, 2005.
  • O. T. Can, M. Kobya, E. Demirbas, and M. Bayramoglu, “Treatment of the textile wastewater by combined electrocoagulation,” Chemosphere, vol. 62, no. 2, 2006.
  • S. Karthikeyan, A. Titus, A. Gnanamani, A. B. Mandal, and G. Sekaran, “Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes,” Desalination, vol. 281, no. 1, pp. 438–445, 2011.
  • S. Şahinkaya, “COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process,” J. Ind. Eng. Chem., vol. 19, no. 2, pp. 601–605, 2013.
  • M. F. Sevimli and C. Kinaci, “Decolorization of textile wastewater by ozonation and Fenton’s process,” in Water Science and Technology, 2002, vol. 45, no. 12, pp. 279–286.
  • N. Daneshvar, A. Oladegaragoze, and N. Djafarzadeh, “Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters,” J. Hazard. Mater., vol. 129, no. 1–3, pp. 116–122, 2006.
  • M. Y. Mollah, R. Schennach, J. R. Parga, and D. L. Cocke, “Electrocoagulation (EC)--Science and Applications.,” J. Hazard. Mater., vol. 84, no. 1, pp. 29–41, 2001.
  • M. Y. A. Mollah, P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” Journal of Hazardous Materials, vol. 114, no. 1–3. pp. 199–210, 2004.
  • I. Arslan-alaton, M. Kobya, A. Akyol, and M. Bayramoǧlu, “Electrocoagulation of azo dye production wastewater with iron electrodes: Process evaluation by multi-response central composite design,” Color. Technol., vol. 125, no. 4, pp. 234–241, 2009.
  • M. Kobya, E. Demirbas, O. T. Can, and M. Bayramoglu, “Treatment of levafix orange textile dye solution by electrocoagulation,” J. Hazard. Mater., vol. 132, no. 2–3, 2006.
  • O. T. Can, M. Kobya, E. Demirbas, and M. Bayramoglu, “Treatment of the textile wastewater by combined electrocoagulation,” Chemosphere, vol. 62, no. 2, pp. 181–187, 2006.
  • C. S. Keskin, A. Özdemir, and I. A. Şengil, “Simultaneous decolorization of binary mixture of reactive yellow and acid violet from wastewaters by electrocoagulation,” Water Sci. Technol., vol. 63, no. 8, pp. 1644–1650, 2011.
  • H. A. Kabuk, Y. Avsar, F. Ilhan, and K. Ulucan, “Comparison of pH Adjustment and Electrocoagulation Processes on Treatability of Metal Plating Wastewater,” Sep. Sci. Technol., vol. 49, no. 4, pp. 613–618, 2014.
  • K. K. Dermentzis, A. Christoforidis, and E. Valsamidou, “Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation,” Int. J. Environ. Sci., vol. 1, no. 5, pp. 697–710, 2011.
  • F. Akbal and S. Camci, “Comparison of electrocoagulation and chemical coagulation for heavy metal removal,” Chem. Eng. Technol., vol. 33, no. 10, pp. 1655–1664, 2010.
  • Ü. Tezcan Ün, S. Uǧur, A. S. Koparal, and Ü. Bakir Öǧütveren, “Electrocoagulation of olive mill wastewaters,” Sep. Purif. Technol., vol. 52, no. 1, pp. 136–141, 2006.
  • H. Inan, A. Dimoglo, H. Şimşek, and M. Karpuzcu, “Olive oil mill wastewater treatment by means of electro-coagulation,” Sep. Purif. Technol., vol. 36, no. 1, pp. 23–31, 2004.
  • O. Apaydin, U. Kurt, and M. T. Gonullu, “An Investigation on the Treatment of Tannery Wastewater by Electrocoagulation,” Water, vol. 11, no. 4, pp. 546–555, 2009.
  • A. Deghles and U. Kurt, “Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process,” Chem. Eng. Process. Process Intensif., vol. 104, pp. 43–50, 2016.
  • M. Uǧurlu, A. Gürses, Ç. Doǧar, and M. Yalçin, “The removal of lignin and phenol from paper mill effluents by electrocoagulation,” J. Environ. Manage., vol. 87, no. 3, pp. 420–428, 2008.
  • M. Kobya, E. Senturk, and M. Bayramoglu, “Treatment of poultry slaughterhouse wastewaters by electrocoagulation,” J. Hazard. Mater., vol. 133, no. 1–3, pp. 172–176, 2006.
  • C. Sarala, “Domestic Wastewater Treatment by Electrocoagulation with Fe-Fe Electrodes,” Int. J. Eng. Trends Technol., vol. 3, no. 4, pp. 530–533, 2012.
  • S. Barişçi and O. Turkay, “Domestic greywater treatment by electrocoagulation using hybrid electrode combinations,” J. Water Process Eng., vol. 10, pp. 56–66, 2016.
  • F. Ilhan, U. Kurt, O. Apaydin, and M. T. Gonullu, “Treatment of leachate by electrocoagulation using aluminum and iron electrodes,” J. Hazard. Mater., vol. 154, no. 1–3, pp. 381–389, 2008.
  • S. Top, E. Sekman, S. Hoşver, and M. S. Bilgili, “Characterization and electrocaogulative treatment of nanofiltration concentrate of a full-scale landfill leachate treatment plant,” Desalination, vol. 268, no. 1–3, pp. 158–162, 2011.
  • O. T. Can and M. Bayramoglu, “The effect of process conditions on the treatment of benzoquinone solution by electrocoagulation,” J. Hazard. Mater., vol. 173, no. 1–3, pp. 731–736, 2010.
  • E. Demirbas and M. Kobya, “Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes,” Process Saf. Environ. Prot., vol. 105, pp. 79–90, 2017.
  • I. A. Şengil, S. Kulaç, and M. Özacar, “Treatment of tannery liming drum wastewater by electrocoagulation,” J. Hazard. Mater., vol. 167, no. 1–3, pp. 940–946, 2009.
  • P. K. Holt, G. W. Barton, M. Wark, and C. A. Mitchell, “A quantitative comparison between chemical dosing and electrocoagulation,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 211, no. 2–3, pp. 233–248, 2002.
Academic Platform Journal of Engineering and Smart Systems-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2022
  • Yayıncı: Akademik Perspektif Derneği
Sayıdaki Diğer Makaleler

Karbon Elyaf Dolgulu Pa6 Polimer Kompozitlerinin Aşınma Özellikleri Üzerine Uygulanan Yük ve Kayma Hızının Etkisi

Salih Hakan YETGİN, Murat KOYUNBAKAN, Ferhat YILDIRIM, Gözde KUŞ, Volkan ESKİZEYBEK, Abdurrahman GENÇ

Gömülü Sistem Tabanlı EKG Holter Cihazının Tasarlanması

Ahmet YESEVİ, Muhammed GÜLER, Mustafa Zahid YILDIZ

2, 10, 16, 24-Tetrakis 4- (2-fenoksi-l, 3-diokso-2,3-dihidro-lH-inden-2-iloksi) ftalonitril içeren kobalt (II) bileşiğinin DNA bağlanmasının spektroskopik yöntemler ile araştırılması

Ali ARSLANTAS, Mehmet Salih AĞIRTAŞ

Testere Dişi Çift Bariyer Yapısında Rezonans Tünelleme Olayının İncelenmesi

Mehmet BATI

Kablosuz Vücut Alan Ağları için Enerji Verimli MAC Protokolleri (KVAA)

Zafer ALBAYRAK, Hatem MUSA

Polyester Matrisli Kompozit Özeliklerine Vitrifiye Seramik Sağlık Gereci Atık Miktarının Etkisi

Gökhan AÇIKBAŞ, Hasan GÖÇMEZ

Elektrokoagülayon Yöntemiyle Reaktif Yellow 160 Boyar Maddesinin Giderimi

Ahmet AYGÜN, Beytullah EREN

Endüstri Yapısı Temeline Yönelik Vaka Analizi

Sedat Sert, Aşkın Özocak, Ertan Bol

Otomobil Koltuklarını Isıtmak İçin Yeniden Tasarlanan Standart Otomobil Klima Sisteminin Performansının Bulanık Mantık ile Modellenmesi

Ali ATEŞ, Kevser DİNÇER, Eyüb CANLI, Sadık ATA

İmalat Firmalarında İş Sağlığı ve Güvenliği Yatırım Harcamaları İle Kaza Oranları ve İş Kazası Maliyetleri İlişkisi: İşletme Bütçesine İSG Harcamaları İçin Kaynak Tahsis Edilmesinin Önemi

Metin Bayram, Hüseyin İskender, Abdullah Hulusi Kökçam