Su Kaynaklarındaki İlaç Kalıntılarının İleri Oksidasyon Yöntemleri ile Arıtılabilirliğinin İncelenmesi

Mikrokirleticilerin çevre üzerindeki etkileri ve sucul ortamda yarattıkları toksik etkiler son yıllarda en çok dikkat çeken çalışma konulardan biri haline gelmiştir. Çünkü bu bileşikleri hedef alan arıtma teknikleri klasik arıtma sistemleri içinde yer almamaktadır. Mikrokirleticiler içerisinde bugün en çok dikkat çeken, içme suları vasıtasıyla insan sağlığında risk uyandırma potansiyeline sahip ilaç kalıntılarıdır. İlaç kalıntılarının potansiyel sağlık riskleri yanında, sucul ekosisteme ve fiziki çevreye olan zararları da pek çok araştırmanın konusunu oluşturmuştur. Son on yıllık süreçte yapılan çalışmalar evsel atıksuların arıtımından sonra nanogram seviyelerinden düşük mikrogram seviyelerine kadar ilaç kalıntısı bulunduğunu ortaya koymuştur. Bu ilaç kalıntıları doğal su çevrimi ile rahatlıkla içme sularına ulaşabilmektedir. Klasik yöntemlerle arıtılamayan biyolojik olarak dirençli ilaç kalıntıları için son yıllarda İleri Oksidasyon Prosesleri (İOP) sıklıkla kullanılmaya başlanmıştır. İOP biyolojik arıtıma direnç gösteren çeşitli mikro kirleticileri kolaylıkla parçalayabilmekte ve atıksuyun biyolojik arıtılma potansiyelini artırmaktadır. İOP içerisinde ultrasonik oksidasyon, UV radyasyonu, membran filtrasyonu gibi prosesler yer almaktadır. Bu prosesler homojen katalizörler (ozon, hidrojen peroksit, Fenton reaktifleri vb.) ve heterojen katalizörler (ZnO, TiO2, sıfır değerlikli demir vb.) varlığında geliştirilerek mikrokirleticiler için en etkin arıtma yöntemi belirlenmektedir. Bu çalışma biyolojik arıtıma dirençli mikrokirleticilerden olan ilaç kalıntılarının İOP ile arıtılabilirliğinin incelendiği çalışmaların derlendiği bir özet çalışması niteliğindedir. Bu çalışma ile mikrokirleticilerin çevresel dolaşımı, taşınma mekanizmaları ve arıtılma yöntemleri göz önüne getirilerek, çevresel risklerine ve insan sağlığına muhtemel zararlarına dikkat çekilmesi amaçlamaktadır. Çalışma ayrıca klasik arıtma sistemlerinde mikrokirleticileri arıtabilecek yeni teknolojilere yer verilmesi ve mikrokirleticilerin karar alma mekanizmaları tarafından yasal düzenlemelere eklenmesi açısından yol gösterici olmayı hedeflemektedir.

The study of treatability of residual pharmaceutical in water sources via Advanced Oxidation Technologies: A review

The environmental impacts and the toxic effects in the aquatic environment created by micropollutants have been the most remarkable research studies in recent years. The advanced treatment techniques designed for these pollutants are not included in conventional wastewater treatment systems. Today, the most focused micropollutants groups are residual pharmaceuticals which have potentially health risks for human through drinking water. In addition to the potential health risks of residual pharmaceuticals, their harmful effect on aquatic and physical environment have constituted the main focus of many research studies. It is exposed that residual pharmaceuticals have a range from nanogram levels to the low microgram levels after conventional treatment of domestic wastewater in last decade. These residual pharmaceuticals can easily reach to the drinking water through the hydrological cycle. In recent years, Advanced Oxidation Technologies (AOTs) have been frequently used for the treatment of xenobiotic residual pharmaceuticals which can not be treated by conventional treatment methods. AOTs can easily degrade various micropollutants which resist to biological degradation and increase the biological treatment capacity of wastewater. AOTs includes some processes such as sonoloysis, UV irradiation, ozonation, membran filtration. These processes have been developed in the presence/absence of homogenous (ozon, hydrogenperoxide, Fenton reagents etc.) or heterogenous catalysts (ZnO, TiO2, zero valent iron etc.) to determine the most effective treatment methods for the micropollutants. This study is a review research for the treatability of residual pharmaceuticals via AOTs. In this way, environmental fate, tansport mechanism and treatment methods of residual pharmaceuticals will become important and their potential risks for the human and environmental health will gain more attention. The review also helps to design of conventional treatment methods combined with AOTs which can easily degrade the micropollutants and to guide for the adding micropollutants to new regulations by stakeholders.

___

  • [1] N. Bolong, A. F. Ismail, M. R. Salim, T. Matsuura, “A review of the effects of emerging contaminants in wastewater and options for their removal” Desalination 239, 229–246, 2009.
  • [2] Yer Üstü Su Kalitesi Yönetmeliği, T. C. Resmi Gazete, 28483, Değişik ibare: RG-15/4/2015-29327, 30.11.2012.
  • [3] Pharmaceuticals in Drinking-water, WHO, 2011-2012.
  • [4] Part II Environmental Protection Agency Drinking Water Contaminant Candidate List 3—Draft; Notice, https://www.gpo.gov/fdsys/pkg/FR-2008-02-21/pdf/E8- 3114.pdf, Access Date: 5.03.2018.
  • [5] S. A. Snyder, R. A. Trenholm, G. M. Bruce, E. M. Snyder, R. C. Pleus, Toxicological Relevance of EDCs and Pharmaceuticals in Drinking Water, AWWA Research Foundation, Denver, CO, 2008.
  • [6] M. Cui, D. S. Fay, M. Han, “lin-35/Rb cooperates with the SWI/SNF complex to control Caenorhabditis elegans larval development” Genetics, 167(3), 1177-85, 2004.
  • [7] J. L. Martínez, Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials” Front Microbiol., 3: 1, 2012.
  • [8] F. Baquero, J. L. Martinez, R. Canton, “Antibiotics and antibiotic resistance in water environments” Curr. Opin. Biotechnol. 19, 260–265, 2008.
  • [9] B. G. Zheng, Z. Zheng, J. B. Zhang, X. Z. Luo, J. Q. Wang, Q. Liu, L. H. Wang. “Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation” Desalination 276, 379–385, 2011.
  • [10] F. Me´ndez-Arriaga, R. A. Torres-Palma, C. Pe´trier, S. Esplugas, J. Gimenez, C. Pulgarin, “Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes” Water Research 43, 3984-3991, 2009.
  • [11] R. A. Torres, J. I. Nieto, E. Combet, C. Pe´trier, C. Pulgarin, “Influence of TiO2 concentration on the synergistic effect between photocatalysis and highfrequency ultrasound for organic pollutant mineralization in water” Appl. Catal. B: Environ. 80 (1-2), 168–175, 2008.
  • [12] P. R. Gogate, S. Mujumdar, A. B. Pandit, “A sonophotochemical reactor for the removal formic acid from wastewater” Industrial and Engineering Chemistry Research 41, 3370–3378, 2002.
  • [13] K. Vinodgopal, J. Peller, O. Makogon, and P. V. Kamat, “Ultrasonic mineralization of a reactive textile azo dye, Remazol black B.” Water Research 32 (12), 3646-3650, 1998.
  • [14] I. Arslan, and I. A. Balcıoğlu, Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study. Dyes and Pigments 43, 95-108, 1999.
  • [15] Z. Eren, “İleri Oksidasyon Prosesleri İle Tekstil Boyar Maddelerinin ve Tekstil Atıksularının Arıtılması” Doktora Tezi, Atatürk Üniversitesi, Türkiye, 2009.
  • [16] M. A. Tarr, “Chemical Degradation Methods for Wastes and Pollutants, Environmetnal and Industrial Applications.” University of New Orleans, USA, 2003.
  • [17] T. J. Mason, E. D., Cordemans, “Ultrasonic intensification of chemical processing and related operations: A rewiev” Trans Institue of Chem. Eng. 74, 511- 516, 1996.
  • [18] T. J. Mason, “Chemistry with Ultrasound” Critical Reports on Applied Chemistry: 28, 189 p, Newyork, USA, 1990.
  • [19] K. S. Suslick, "Sonochemistry" Science 247, 1439-45, 1990.
  • [20] D. B. Voncina, A. M. Le-Marechal, “Reactive dye decolorization using combined ultrasound/H2O2” Dyes and Pigments 59, 173-179, 2003.
  • [21] K. S. Suslick, “Liquids irradiated with ultrasound can produce bubbles” Introduction to sonochemistry, http://www.scs.illinois.edu/suslick, Access date, 5.03.2018.
  • [22] S. Irmak, “Fenolik bileşiklerin sulu ortamda fotoFenton yöntemiyle parçalanmalarının incelenmesi” Yüksek Lisans Tezi, Çukurova Üniversitesi, Türkiye, 2000.
  • [23] İ. Arslan, “Treatment of Reactive Dye-Bath Effluents by Heterogenous and Homogenous Advanced Oxidation Processes” Doktora Tezi, Boğaziçi Üniversitesi Çevre Bilimleri Enstitüsü, İstanbul, 2000.
  • [24] N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2” J. Photochemistry and Photobiology A: Chemistry 162, 317-322, 2004.
  • [25] J. Wang, B. Guo, X. Zhang, Z. Zhang, J. Han, J. Wu, “Sonocatalytic degrdation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparision of rutile and anatase” Ultrasonic Sonochemsitry 12, 331-337, 2005.
  • [26] J. Wang, Y. Jiang, Z. Zhang, X. Zhang, T. Ma, G. Zhang, G. Zhao, G. Zhang, Y. Li, “Investigation on the sonocatalytic degradation of acid red B in the presence of nanometer TiO2 catalysts and comparision of catalytic activities of anatase and rutile TiO2 powders” Ultrasonics Sonochemistry 14, 545-551, 2007.
  • [27] Pharmaceuticals in the Water Environment, The National Association of Clean Water Agencies (NACWA), acs.org, Access date, 5.03.2018.
  • [28] D. W. Kolpin, E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, H. T. Buxton, “Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance” Environmental Science & Technology, 36:1202–1211, 2002.
  • [29] White paper Aquatic life criteria for contaminants of Emerging concern, OW/ORD Emerging Contaminants Workgroup, United States Clean Water Act (CWA), EPA, 2008.
  • [30] K. A. Kidd, P. J. Blanchfield, K. H. Mills, V. P. Palace, R. E. Evans, J. M. Lazorchak and R. W. Flick, “Collapse of a fish population after exposure to a synthetic estrogen” PNAS. 104(21), 8897-8901, 2007.
  • [31] N. C. Rowney, A. C. Johnson, R. J. Williams, “Cytotoxic drugs in drinking water: a prediction and risk assessment exercise for the Thames catchment in the United Kingdom” Environmental Toxicology and Chemistry, 28(12), 2733–2743, 2009.
  • [32] B. J. Vanderford, R. A. Pearson, D. J. Rexing, S. A. Snyder, “Analysis of Endocrine Disruptors, Pharmaceuticals, and Personal Care Products in Water Using Liquid Chromatography/Tandem Mass Spectrometry” Analytical Chemistry 2003, 75, (22), 6265-6274, 2003.
  • [33] A. H. Dökmeci, “Bazı Farmasötik İlaç Kalıntılarının Sulardaki Toksik Etkileri” Doktora Tezi, Trakya Üniversitesi, Türkiye, 2009.
  • [34] N. Vieno, T. Tuhkanen, L. Kronberg, “Elimination of pharmaceuticals in sewage treatment plants in Finland.” Water Research, 41, 1001–1012, 2007.
  • [35] M. Klavarioti, D. Mantzavinos, D. Kassinos, “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes” Environment International, 35, 402–417, 2009.
  • [36] T. A. Ternes, M. Meisenheimer, D. McDowell, F. Sacher, H. J. Brauch, B. Haist-Gulde, G. Preuss, U. Wilme, N. Zulei-Seibert, “Removal of pharmaceuticals during drinking water treatment” Environmental Science & Technology, 36, 3855–3863, 2002.
  • [37] P. Westerhoff, Y. Yoon, S. Synder, E. Wert, “Fate of endocrine disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology, 39(17), 6649–6663, 2005.
  • [38] Y. Yoon, P. Westerhoff, S. A. Snyder, E. C. Wert, “Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products” Journal of Membrane Science, 270, 88–100, 2006.
  • [39] M. D. Celiz, J. Tso, D. S. Aga, “Pharmaceutical metabolites in the environment: analytical challenges and ecological risks” Environmental Toxicology and Chemistry, 28(12), 2473–2484, 2009.
  • [40] E. J. Rosenfeldt, K. G. Linden, “Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol and estradiol during UV photolysis and advanced oxidation processes” Environmental Science & Technology, 38, 5476–5486, 2004.
  • [41] R. Kıdak, Ş. Doğan, “Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water” Ultrasonics Sonochemistry, 40, 131-139, 2018.
  • [42] E. A. Serna-Galvis, J. Silva-Agredo, A. L. GiraldoAguirre, O. A. Flórez-Acosta, R. A. Torres-Palma, “High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water” Ultrasonics Sonochemistry 31, 276–283, 2016.
  • [43] N. Tran, P. Drogui, S. K. Brar, A. De Coninck, “Synergistic effects of ultrasounds in the sonoelectrochemical oxidation of pharmaceutical carbamazepine pollutant” Ultrasonics Sonochemistry 34, 380–388, 2017.
  • [44] A. Mowla, M. Mehrvar, R. Dhib, “Combination of sonophotolysis and aerobic activated sludge processes for treatment of synthetic pharmaceutical wastewater” Chemical Engineering Journal 255, 411–423, 2014.
  • [45] M. Tokumura, A. Sugawara, M. Raknuzzaman, Md Habibullah-Al-Mamun, S. Masunaga, “Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes” Chemosphere 159, 317-325, 2016.
  • [46] S. K. Mondal, A. K. Saha, A. Sinha, “Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization” Journal of Cleaner Production 171, 1203-1214, 2018.
  • [47] C. Köhler, S. Venditti, E. Igos, K. Klepiszewski, E. Benetto, A. Cornelissen, “Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment” Journal of Hazardous Materials 239–240, 70– 77, 2012.
  • [48] M. Klavarioti, D. Mantzavinos, D. Kassinos, “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes” Environment International 35, 402–417, 2009.
  • [49] P. R. Gogate, A. B. Pandit, “A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions” Advances in Environment Research, 8, 501-551, 2004.