Nano Al2O3 Oranının Ni-Co Matrisli Nano Kompozit Kaplamaların Tribolojik Özelliklerine Etkisi

Ni-Co esaslı nanokompozit kaplamaların Mikro Elektro Mekanik Sistemlerde (MEMS) ve Nano Elektro Manyetik Sistemlerde (NEMS) kullanım potansiyelinden dolayı teknolojik gelişmelere paralel olarak önemi gün geçtikçe artmaktadır. Ni-Co esaslı nanokompozit kaplamalar MEMS ve NEMS sistemlerinde karşılaşılan aşınma problemi için çözüm vadetmektedir. Bu bağlamda Ni-Co alaşımı ve Ni-Co/Al2O3 kompozit kaplamalar Doğru Akım (DC) akım türünde, 7 A/dm2 akım şiddetinde ve dört farklı oranda Al2O3 banyo konsantrasyonuna ilave edilerek modifiye edilmiş Watt tipi kaplama banyosu ile bakır altlıklar üzerine kaplanmıştır. Banyo bileşimine Al2O3 ilavesi ve oranın kaplama tabakasının fiziksel ve mekanik özelliklerine etkileri incelenmiştir. Üretilen kaplamaların yapısal özellikleri taramalı elektron mikroskobu (SEM) ve X-ışınları difraksiyonu (XRD) metodu kullanılarak karakterize edilmiştir. Kaplamaların mekanik özellikleri Vickers yöntemi ile ölçülmüştür. Sürtünme ve aşınma davranışları ise ball on disk metodu ve reciprocating yöntemi kullanılarak ortaya çıkarılmıştır. Yapılan inceleme ve karakterizasyonlar sonucunda Ni-Co kaplama banyo bileşimine 1 g/l Al2O3 ilavesinin en iyi mekanik ve tribolojik özellikleri sağladığı tespit edilmiştir

Effect of Nanosize Al2O3 Concentration on Tribological Behavior of Ni-Co based Nanocomposite Coatings

Due to the micro-electrical mechanical system (MEMS) and Nano-electrical mechanical system (MEMS) usage potential, Ni-Co based nanocomposite coatings have been remarkable. Especially, they are promises to solve tribological problem of MEMS and NEMS system. Therefore, Ni-Co alloy and Ni-Co/ Al2O3 composite coatings were prepared from a modified Watt's type electrolyte by Direct Current (DC) with 7A/dm2 current density and four different amounts of Al2O3 added to electrolyte concentration. Effect of amount of Al2O3 in the Ni-Co matrix on mechanical and physical properties were investigated. Produced composite coating layers structure were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Mechanical properties were determined with Vickers microhardness test method. Tribological properties was carried out with reciprocating pin on disk system. As a result of investigation and characterization best mechanical and tribological properties were achieved with 1 g/l Al2O3 addition into electrolyte and at PRC current type.

Kaynakça

R. Karslioglu and H. Akbulut, “Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition,” Appl. Surf. Sci., vol. 353, pp. 615–627, Oct. 2015

D. P. Weston, P. H. Shipway, S. J. Harris, and M. K. Cheng, “Friction and sliding wear behaviour of electrodeposited cobalt and cobalt–tungsten alloy coatings for replacement of electrodeposited chromium,” Wear, vol. 267, no. 5, pp. 934–943, Jun. 2009.

M. Surender, B. Basu, and R. Balasubramaniam, “Wear characterization of electrodeposited Ni–WC composite coatings,” Tribol. Int., vol. 37, no. 9, pp. 743–749, Sep. 2004.

Y. Shacham-Diamand and Y. Sverdlov, “Electrochemically deposited thin film alloys for ULSI and MEMS applications,” Microelectron. Eng., vol. 50, no. 1–4, pp. 525–531, Jan. 2000.

C. Lupi and D. Pilone, “Electrodeposition of energy consumption,” Miner. Eng., vol. 14, no. 11, pp. 1403–1410, Nov. 2001

N. E. Fenineche, R. Hamzaoui, and O. El Kedim, “Structure and magnetic properties of nanocrystalline Co–Ni and Co–Fe mechanically alloyed,” Mater. Lett., vol. 57, no. 26–27, pp. 4165–4169, Sep. 2003.

W. E. G. Hansal, B. Tury, M. Halmdienst, M. L. Varsányi, and W. Kautek, “Pulse reverse plating of Ni–Co alloys: Deposition kinetics of Watts, sulfamate and chloride electrolytes,” Electrochimica Acta, vol. 52, no. 3, pp. 1145–1151, Nov. 2006.

N. V. Myung, D.-Y. Park, B.-Y. Yoo, and P. T. A. Sumodjo, “Development of electroplated magnetic materials for MEMS,” J. Magn. Magn. Mater., vol. 265, no. 2, pp. 189–198, Sep. 2003.

S. E. Lyshevski, MEMS and NEMS: Systems, Devices, and Structures. CRC Press, 2002

M. P. Q. Argañaraz et al., “The chemistry and structure of nickel–tungsten coatings obtained by pulse galvanostatic electrodeposition,” Electrochimica Acta, vol. 72, pp. 87–93, Jun. 2012

B. Bhushan, “Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices,” Microelectron. Eng., vol. 84, no. 3, pp. 387–412, Mar. 2007.

N. S. Tambe and B. Bhushan, “Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants,” Nanotechnology, vol. 15, no. 11, p. 1561, 2004

L. Shi, C. Sun, P. Gao, F. Zhou, and W. Liu, “Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating,” Appl. Surf. Sci., vol. 252, no. 10, pp. 3591–3599, Mar. 2006.

L. Shi, C. F. Sun, F. Zhou, and W. M. Liu, “Electrodeposited nickel–cobalt composite coating containing nano-sized Si3N4,” Mater. Sci. Eng. A, vol. 397, no. 1, pp. 190–194, Apr. 2005.

G. Wu, N. Li, D. Zhou, and K. Mitsuo, “Electrodeposited Co–Ni–Al2O3 composite coatings,” Surf. Coat. Technol., vol. 176, no. 2, pp. 157–164, Jan. 2004.

X. Li, T. Ono, R. Lin, and M. Esashi, “Resonance enhancement of micromachined resonators with strong mechanical-coupling between two degrees of freedom,” Microelectron. Eng., vol. 65, no. 1–2, pp. 1–12, Jan. 2003.

L. Shi, C. F. Sun, P. Gao, F. Zhou, and W. M. Liu, “Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings,” Surf. Coat. Technol., vol. 200, no. 16–17, pp. 4870–4875, Apr. 2006

“D EMİRKESEN, E., ‘Kompozit Malzemeler’, İTÜ Kimya Fakültesi, 1. Baskı s.1-5, 1991.”

L. M. Chang, M. Z. An, and S. Y. Shi, “Microstructure and characterization of Ni-Co/Al2O3 composite coatings by pulse reversal electrodeposit,” Mater. Chem. Phys., vol. 100, no. 2–3, pp. 395–399, Dec. 2006.

Kaynak Göster