Bu Çalışma, eklemeli imalatın en önemli problemlerinden bir tanesi olan dengesiz sıcaklık dağılımı üzerine yapılan çalışmaların araştırılmasını konu almaktadır. İmalat esnasında meydana gelen hatalara etki eden önemli parametrelerden olan heterojen sıcaklık dağılımı, kalıntı gerilemeler ve boyutsal değişimler araştırılmıştır. Farklı tip metal malzemelerin doğrudan metal lazer sinterleme (DMLS) yöntemi ile imalatı esnasında parça üzerinde meydana gelen sorunlar incelenmiştir. İmalat parametrelerinin meydana gelen hatalara olan etkisi incelenmiştir. Sonlu elemanlar analizleri ile imalat öncesi sıcaklık ve hata tahmini konusunda gerçekleştirilmiş farklı yaklaşımlar da ele alınmıştır. Sonuç olarak hataların giderilmesi konusunda yapılması gerekenler, mevcut bilgiler ışığında ortaya konulmuştur.
In this study, studies on unstable temperature distribution, one of the biggest problems of joint manufacturing, have been evaluated. Heterogeneous temperature distributions, residual stresses and dimensional changes were investigated, which are the most important factors in manufacturing faults. The problems that arise during manufacturing in different types of metal materials have been evaluated in terms of direct metal laser sintering (DMLS) and manufacturing method. The faulty effect of manufacturing parameters has been investigated. Different approaches on pre-manufacturing temperature and error estimation were also discussed with finite element analysis. As a result, what needs to be done to rectify the mistakes is revealed in the light of the available information. "> [PDF] DMLS ile Eklemeli İmalatta Dengesiz Sıcaklık Dağılımı ve Parçaya Etkilerinin Araştırılması | [PDF] The Investigation of Temperature Distribution and Thermal Problems in DMLS Additive Manufacturing Bu Çalışma, eklemeli imalatın en önemli problemlerinden bir tanesi olan dengesiz sıcaklık dağılımı üzerine yapılan çalışmaların araştırılmasını konu almaktadır. İmalat esnasında meydana gelen hatalara etki eden önemli parametrelerden olan heterojen sıcaklık dağılımı, kalıntı gerilemeler ve boyutsal değişimler araştırılmıştır. Farklı tip metal malzemelerin doğrudan metal lazer sinterleme (DMLS) yöntemi ile imalatı esnasında parça üzerinde meydana gelen sorunlar incelenmiştir. İmalat parametrelerinin meydana gelen hatalara olan etkisi incelenmiştir. Sonlu elemanlar analizleri ile imalat öncesi sıcaklık ve hata tahmini konusunda gerçekleştirilmiş farklı yaklaşımlar da ele alınmıştır. Sonuç olarak hataların giderilmesi konusunda yapılması gerekenler, mevcut bilgiler ışığında ortaya konulmuştur. "> Bu Çalışma, eklemeli imalatın en önemli problemlerinden bir tanesi olan dengesiz sıcaklık dağılımı üzerine yapılan çalışmaların araştırılmasını konu almaktadır. İmalat esnasında meydana gelen hatalara etki eden önemli parametrelerden olan heterojen sıcaklık dağılımı, kalıntı gerilemeler ve boyutsal değişimler araştırılmıştır. Farklı tip metal malzemelerin doğrudan metal lazer sinterleme (DMLS) yöntemi ile imalatı esnasında parça üzerinde meydana gelen sorunlar incelenmiştir. İmalat parametrelerinin meydana gelen hatalara olan etkisi incelenmiştir. Sonlu elemanlar analizleri ile imalat öncesi sıcaklık ve hata tahmini konusunda gerçekleştirilmiş farklı yaklaşımlar da ele alınmıştır. Sonuç olarak hataların giderilmesi konusunda yapılması gerekenler, mevcut bilgiler ışığında ortaya konulmuştur.
In this study, studies on unstable temperature distribution, one of the biggest problems of joint manufacturing, have been evaluated. Heterogeneous temperature distributions, residual stresses and dimensional changes were investigated, which are the most important factors in manufacturing faults. The problems that arise during manufacturing in different types of metal materials have been evaluated in terms of direct metal laser sintering (DMLS) and manufacturing method. The faulty effect of manufacturing parameters has been investigated. Different approaches on pre-manufacturing temperature and error estimation were also discussed with finite element analysis. As a result, what needs to be done to rectify the mistakes is revealed in the light of the available information. ">

DMLS ile Eklemeli İmalatta Dengesiz Sıcaklık Dağılımı ve Parçaya Etkilerinin Araştırılması

Bu Çalışma, eklemeli imalatın en önemli problemlerinden bir tanesi olan dengesiz sıcaklık dağılımı üzerine yapılan çalışmaların araştırılmasını konu almaktadır. İmalat esnasında meydana gelen hatalara etki eden önemli parametrelerden olan heterojen sıcaklık dağılımı, kalıntı gerilemeler ve boyutsal değişimler araştırılmıştır. Farklı tip metal malzemelerin doğrudan metal lazer sinterleme (DMLS) yöntemi ile imalatı esnasında parça üzerinde meydana gelen sorunlar incelenmiştir. İmalat parametrelerinin meydana gelen hatalara olan etkisi incelenmiştir. Sonlu elemanlar analizleri ile imalat öncesi sıcaklık ve hata tahmini konusunda gerçekleştirilmiş farklı yaklaşımlar da ele alınmıştır. Sonuç olarak hataların giderilmesi konusunda yapılması gerekenler, mevcut bilgiler ışığında ortaya konulmuştur.

The Investigation of Temperature Distribution and Thermal Problems in DMLS Additive Manufacturing

In this study, studies on unstable temperature distribution, one of the biggest problems of joint manufacturing, have been evaluated. Heterogeneous temperature distributions, residual stresses and dimensional changes were investigated, which are the most important factors in manufacturing faults. The problems that arise during manufacturing in different types of metal materials have been evaluated in terms of direct metal laser sintering (DMLS) and manufacturing method. The faulty effect of manufacturing parameters has been investigated. Different approaches on pre-manufacturing temperature and error estimation were also discussed with finite element analysis. As a result, what needs to be done to rectify the mistakes is revealed in the light of the available information.

___

  • [1] W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, and S. S. Babu, “The metallurgy and processing science of metal additive manufacturing,” Int. Mater. Rev., vol. 61, no. 5, pp. 315–360, 2016.
  • [2] C. Körner, “Additive manufacturing of metallic components by selective electron beam melting - A review,” Int. Mater. Rev., vol. 61, no. 5, pp. 361–377, 2016.
  • [3] D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Int. Mater. Rev., vol. 57, no. 3, pp. 133–164, 2012.
  • [4] D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, “Additive manufacturing of metals,” Acta Mater., vol. 117, pp. 371–392, Sep. 2016.
  • [5] T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components – Process, structure and properties,” Prog. Mater. Sci., vol. 92, pp. 112–224, Mar. 2018.
  • [6] K. V. Wong and A. Hernandez, “A Review of Additive Manufacturing,” ISRN Mech. Eng., vol. 2012, pp. 1–10, 2012.
  • [7] S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des., vol. 95, pp. 431–445, 2016.
  • [8] W. E. Frazier, “Metal additive manufacturing: A review,” J. Mater. Eng. Perform., vol. 23, no. 6, pp. 1917– 1928, 2014.
  • [9] S. S. Kayacan M. Y., “Ürün geliştirme sürecinde hızlı prototip uygulamaları,” Plast. Derg., vol. 125, pp. 122– 130, 2014.
  • [10] ASTM International, F2792-12a - Standard Terminology for Additive Manufacturing Technologies. 2013.
  • [11] D. Manfredi, F. Calignano, E. P. Ambrosio, M. Krishnan, R. Canali, S. Biamino, M. Pavese, E. Atzeni, L. Luliano, P. Fino, and C. Badini, “Direct Metal Laser Sintering: An additive manufacturing technology ready to produce lightweight structural parts for robotic applications,” Metall. Ital., vol. 105, no. 10, pp. 15–24, 2013.
  • [12] “httpen,” wikipedia, 2014. [Online]. Available: https://en.wikipedia.org/wiki/Selective_laser_sintering.
  • [13] Additively.com, “No Title.” [Online]. Available: https://www.additively.com/en/learn-about/laser-melting.
  • [14] M. Yan, S. D. Luo, G. B. Schaffer, and M. Qian, “Impurity (Fe, Cl, and P)-induced grain boundary and secondary phases in commercially pure titanium (CP-Ti),” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 44, no. 8, pp. 3961–3969, 2013.
  • [15] M. Yan, M. S. Dargusch, C. Kong, J. A. Kimpton, S. Kohara, M. Brandt, and M. Qian, “In Situ Synchrotron Radiation Study of TiH2-6Al-4V and Ti-6Al-4V: Accelerated Alloying and Phase Transformation, and Formation of an Oxygen-Enriched Ti4Fe2O Phase in TiH2- 6Al-4V,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 46, no. 1, pp. 41–45, 2015.
  • [16] M. Yan, S. D. Luo, G. B. Schaffer, and M. Qian, “TEM and XRD characterisation of commercially pure ??-Ti made by powder metallurgy and casting,” Mater. Lett., vol. 72, pp. 64–67, 2012.
  • [17] M. Yan, M. Qian, C. Kong, and M. S. Dargusch, “Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit,” Acta Biomater., vol. 10, no. 2, pp. 1014–1023, 2014.
  • [18] K. U. Kainer, “High Temperature Ceramic Matrix Composites,” 2006.
  • [19] M. Qian, Y. F. Yang, S. D. Luo, and H. P. Tang, 12. Elsevier Inc., 2015.
  • [20] K. Crosby, “Titanium-6Aluminum-4Vanadium For Functionally Graded Orthopedic Implant Applications,” Univ. Connect., 2013.
  • [21] I. Gibson, D. W. Rosen, and B. Stucker, “Additive manufacturing technologies,” Vasa, no. December, 2010.
  • [22] J. Wroe, INTRODUCTION TO Additive Manufacturing TECHNOLOGY, 1st ed. Shrewsburry: Association, European powder metallurgy, 2012.
  • [23] A. Simchi and H. Pohl, “Effects of laser sintering processing parameters on the microstructure and densification of iron powder,” Mater. Sci. Eng. A, vol. 359, no. 1–2, pp. 119–128, 2003.
  • [24] J. Delgado, J. Ciurana, and C. A. Rodríguez, “Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials,” Int. J. Adv. Manuf. Technol., vol. 60, no. 5–8, pp. 601–610, 2012.
  • [25] F. Calignano, D. Manfredi, E. P. Ambrosio, L. Iuliano, and P. Fino, “Influence of process parameters on surface roughness of aluminum parts produced by DMLS,” Int. J. Adv. Manuf. Technol., vol. 67, no. 9–12, pp. 2743– 2751, 2013.
  • [26] H. Pohl, A. Simchi, M. Issa, and H. C. Dias, “Thermal stresses in direct metal laser sintering,” Proc. SFF Symp., pp. 366–372, 2001.
  • [27] I. Shishkovsky, “Stress-strain analysis of porous scaffolds made from titanium alloys synthesized via SLS method,” Appl. Surf. Sci., vol. 255, no. 24, pp. 9902–9905, 2009.
  • [28] H. Exner, P. Regenfuss, L. Hartwig, S. Klötzer, and R. Ebert, “Selective laser micro sintering with a novel process,” Proc. SPIE, vol. 5063, pp. 145–151, 2003.
  • [29] S. Caro, D. Chablat, R. Ur-Rehman, P. Wenger, and A. Bernard, “Global Product Development,” pp. 373–383, 2011.
  • [30] L. S. Bertol, W. K. Júnior, F. P. Da Silva, and C. Aumund-Kopp, “Medical design: Direct metal laser sintering of Ti-6Al-4V,” Mater. Des., vol. 31, no. 8, pp. 3982–3988, 2010.
  • [31] R. Paul, “Modeling and optimization of powder based additive manufacturing (AM) processes,” 2013.
  • [32] F. Xie, X. He, S. Cao, and X. Qu, “Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering,” J. Mater. Process. Technol., vol. 213, no. 6, pp. 838–843, 2013.
  • [33] C. Aumund-Kopp and F. Petzoldt, “Laser Sintering of parts with complex internal structures,” Proc. 2008 world Congr. powder Metall. Part. Mater., vol. 1, no. 3, pp. 385– 397, 2008.
  • [34] T. Hayashi, K. Maekawa, M. Tamura, and K. Hanyu, “Selective Laser Sintering Method Using Titanium Powder Sheet Toward Fabrication of Porous Bone Substitutes,” JSME Int. J. Ser. A, vol. 48, no. 4, pp. 369–375, 2005.
  • [35] L. Ventola, F. Robotti, M. Dialameh, F. Calignano, D. Manfredi, E. Chiavazzo, and P. Asinari, “Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering,” Int. J. Heat Mass Transf., vol. 75, pp. 58–74, 2014.
  • [36] Y. Ning, “Process Parameter Optimization for Direct Metal Laser Sintering ( DMLS ),” p. 167, 2005.
  • [37] M. H. Farshidianfar, A. Khajepour, and A. P. Gerlich, “Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing,” J. Mater. Process. Technol., vol. 231, pp. 468–478, 2016.
  • [38] Y. Ningy, J. Y. H. Fuhy, Y. S. Wongy, and H. T. Lohy, “An intelligent parameter selection system for the direct metal laser sintering process,” Int. J. Prod. Res, vol. 42, no. 1, pp. 183–199, 2004.
  • [39] Y. Ning, Y. S. Wong, J. Y. H. Fuh, and H. T. Loh, “An approach to minimize build errors in direct metal laser sintering,” IEEE Trans. Autom. Sci. Eng., vol. 3, no. 1, pp. 73–80, 2006.
  • [40] S. Merkt, C. Hinke, J. Bultmann, M. Brandt, and M. Xie, “The mechanical response of TiAl6V4 lattice structures manufactured by SLM in quasi static and dynamic compression tests,” vol. 17006, pp. 3–10, 2015.
  • [41] J. Parthasarathy, B. Starly, and S. Raman, “A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications,” J. Manuf. Process., vol. 13, no. 2, pp. 160– 170, 2011.
  • [42] C. Yan, L. Hao, A. Hussein, P. Young, J. Huang, and W. Zhu, “Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering,” Mater. Sci. Eng. A, vol. 628, pp. 238–246, 2015.
  • [43] M. Yan and P. Yu, “An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V — Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder,” Sinter. Tech. Mater., pp. 76–106, 2015.
  • [44] A. Vlasea, M., Lane, B., Lopez, F., Mekhontsev, S., Donmez, “DEVELOPMENT OF POWDER BED FUSION ADDITIVE MANUFACTURING TEST BED FOR ENHANCED REAL-TIME PROCESS CONTROL,” Proc. Int. Solid Free. Fabr. Symp., vol. 1, no. 1, pp. 527–539, 2015.
  • [45] J. Živčák, M. Šarik, and R. Hudák, “FEA simulation of thermal processes during the direct metal laser sintering of Ti64 titanium powder,” Measurement, vol. 94, pp. 893– 901, 2016.
  • [46] O. Kayabaşı, E. Yüzbasıoğlu, and F. Erzincanlı, “Static, dynamic and fatigue behaviors of dental implant using finite element method,” Adv. Eng. Softw., vol. 37, no. 10, pp. 649–658, 2006.
  • [47] J. Romano, L. Ladani, and M. Sadowski, “Thermal Modeling of Laser Based Additive Manufacturing Processes within Common Materials,” Procedia Manuf., vol. 1, pp. 238–250, 2015.
  • [48] a. Cerardi, M. Caneri, R. Meneghello, G. Concheri, and M. Ricotta, “Mechanical characterization of polyamide cellular structures fabricated using selective laser sintering technologies,” Mater. Des., vol. 46, pp. 910–915, 2013.
  • [49] G. Campoli, M. S. Borleffs, S. Amin Yavari, R. Wauthle, H. Weinans, and a. a. Zadpoor, “Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing,” Mater. Des., vol. 49, pp. 957–965, 2013.
  • [50] R. Guo, “Numerical Analysis on Static Mechanical Properties of the Periodic Multilayer Lattice Material,” Engineering, vol. 3, no. 12, pp. 1149–1154, 2011.
  • [51] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. L. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Comput. Des., vol. 69, pp. 65–89, 2015.
  • [52] H. W. Mindt, O. Desmaison, M. Megahed, A. Peralta, and J. Neumann, “Modeling of Powder Bed Manufacturing Defects,” J. Mater. Eng. Perform., vol. 27, no. 1, pp. 32–43, 2018.
  • [53] D. M. Jacobson and G. Bennett, “Practical Issues in the Application of Direct Metal Laser Sintering,” Solid Free. Fabr. Symp., pp. 728–739, 2006.
  • [54] M. L. Vlasea, B. Lane, F. Lopez, S. Mekhontsev, and A. Donmez, “Development of powder bed fusion additive manufacturing test bed for enhanced real-time process control,” 26th Annu. Int. Solid Free. Fabr. Symp., pp. 527–539, 2015.
  • [55] S. Mounsey, B. Hon, and C. Sutcliffe, “Performance modelling and simulation of metal powder bed fusion production system,” CIRP Ann. - Manuf. Technol., vol. 65, no. 1, pp. 421–424, 2016.
  • [56] A. E. Patterson, S. L. Messimer, and P. A. Farrington, “Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need,” Technologies, vol. 5, no. 2, p. 15, 2017.
  • [57] H. Peng, D. B. Go, R. Billo, S. Gong, M. R. Shankar, B. A. Gatrell, J. Budzinski, P. Ostiguy, R. Attardo, C. Tomonto, J. Neidig, and D. Hoelzle, “Part-scale model for fast prediction of thermal distortion in DMLS additive manufacturing ; Part 1 : a thermal cicuit network model,” in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, 2016, pp. 361–381.
  • [58] H. Peng, D. B. Go, R. Billo, S. Gong, M. R. Shankar, B. A. Gatrell, J. Budzinski, P. Ostiguy, R. Attardo, C. Tomonto, J. Neidig, and D. Hoelzle, “Part-scale model for fast prediction of thermal distortion in DMLS additive manufacturing ; Part 2 : a quasistatic thermomechanical model,” in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, 2016, pp. 382–397.
  • [59] Y. Gaoa, J. Xingb, J. Zhanga, N. Luoa, and H. Zheng, “Research on measurement method of selective laser sintering (SLS) transient temperature,” Opt. Opt., vol. 119, pp. 1–6, 2007.
  • [60] J. Lee and V. Prabhu, “Simulation modeling for optimal control of additive manufacturing processes,” Addit. Manuf., 2016.
  • [61] B. Lane, S. Moylan, E. P. Whitenton, and L. Ma, “Thermographic measurements of the commercial laser powder bed fusion process at NIST,” Rapid Prototyp. J., vol. 22, no. 5, pp. 778–787, 2016.
  • [62] B. Lane, E. Whitenton, and S. Moylan, “Multiple sensor detection of process phenomena in laser powder bed fusion,” Thermosense Therm. Infrared Appl., vol. 9861, no. 986104–1, pp. 1–9, 2016.
  • [63] J. C. Heigel and B. M. Lane, “Measurement of the Melt Pool Length During Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process,” Vol. 2 Addit. Manuf. Mater., no. April, p. V002T01A045, 2017.
  • [64] A. J. Dunbar, E. R. Denlinger, M. F. Gouge, T. W. Simpson, and P. Michaleris, “Comparisons of laser powder bed fusion additive manufacturing builds through experimental in situ distortion and temperature measurements,” Addit. Manuf., vol. 15, pp. 57–65, 2017.
  • [65] T. Keller, G. Lindwall, S. Ghosh, L. Ma, B. M. Lane, F. Zhang, U. R. Kattner, E. A. Lass, J. C. Heigel, Y. Idell, M. E. Williams, A. J. Allen, J. E. Guyer, and L. E. Levine, “Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Nibased superalloys,” Acta Mater., vol. 139, pp. 244–253, 2017.
  • [66] L. E. Criales, Y. M. Arısoy, B. Lane, S. Moylan, A. Donmez, and T. Özel, “Predictive modeling and optimization of multi-track processing for laser powder bed fusion of nickel alloy 625,” Addit. Manuf., vol. 13, pp. 14– 36, 2017.
  • [67] L. Ma, J. Fong, B. Lane, S. Moylan, J. Filliben, A. Heckert, and L. Levine, “Using Design of Experiments in Finite Element Modeling To Identify Critical Variables for Laser Powder Bed Fusion,” Solid Free. Fabr. Symp., pp. 219–228, 2015.
  • [68] I. Yadroitsava and I. Yadroitsev, “Residual stress in metal specimens produced by direct metal laser sintering,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.
  • [69] F. State, “RESIDUAL STRESSES IN DIRECT METAL LASER SINTERED PARTS,” Interim Interdiscip. J., vol. 14, no. 1, pp. 110–123, 2015.
  • [70] C. Yan, L. Hao, A. Hussein, S. L. Bubb, P. Young, and D. Raymont, “Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering,” J. Mater. Process. Technol., vol. 214, no. 4, pp. 856–864, 2014.
  • [71] W. F. Mitchell, D. C. Lang, T. A. Merdes, E. W. Reutze, and G. S. Welsh, “DIMENSIONAL ACCURACY OF TITANIUM DIRECT METAL LASER SINTERED,” in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, 2016, pp. 2029–2042.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği
Academic Researches Index - FooterLogo