A Novel Economic Power Flow Solution in Practical Multi-terminal AC-DC Systems using Genetic Algorithm

This paper presents a novel approach for economic power flow in multi-terminal AC-DC systems. Unlike the similar AC-DC power flow studies, real equivalent circuit for the under load tap changer transformers (ULTCs) of the DC converters are considered in the AC-DC power flow algorithm. So the study provides real accurate results for practical AC-DC applications. Economic power flow solution for minimum generation cost is provided by Genetic Algorithm (GA). The proposed approach is tested on the modified IEEE 14-bus AC-DC test system. The results show that the proposed approach is efficient to reach the global optimum point of minimum generation cost without getting stuck to local minima while satisfying system constraints.

___

  • S. Fischer, W. Heidemann, H. Müller-Steinhagen, B. Perers, P. Bergquist, and B. Hellström, “Collector test method under quasi-dynamic conditions according to the European Standard EN 12975-2”, Solar Energy 76, 117–123, 2004.
  • TS EN ISO 9806, “Güneş Enerjisi-Güneş kollektörleri-Deney metotlar”, 2014
  • M. Shatat, S. Riffat, and F. Agyenim, “Experimental testing method for solar light simulator with an attached evacuated solar collector”, International Journal of Energy and Environment, 4, 2, 219-230, 2013
  • İ.İ. Köse, “Düzlemsel güneş kollektörlerinde boru içerisinde kıvrılmış şerit kullanımının ısı transferine etkisinin deneysel incelenmesi”, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans tezi, Isparta, 2011.
  • H. Sabahi, A.A. Tofigh, I.M. Kakhki, and H. Bungypoor-Fard, “Design, construction and performance test of an efficient large-scale solar simulator for investigation of solar thermal collectors”, Sustainable Energy Technologies and Assessments, 15, 35–41, 2016.
  • K. Sopian, Dr. Supranto, W.R.W. Daud, M.Y. Othman, and B. Yatim, “Thermal performance of the double-pass solar collector with and without porous media”, Renewable Energy”, 18, 557-564, 1999
  • C. Dominguez, I. Anton, and G. Sala, “Solar simulator for concentrator photovoltaic systems”, Optics Express, 16, 19, 14894-14901, 2008
  • M.G. Guvenc, C. Gurcan, K. Durgin, and D. MacDonald, “Solar simulator and I-V measurement system for large area solar cell testing”, Proceedings of the American Society for Engineering Education Annual Conference and Exposition, 3659, 2004.
  • Q. Meng, Y. Wang, and L. Zhang, “Irradiance characteristics and optimization design of a large-scale solar simulator”, Solar Energy, 85, 1758-1767, 2011.
  • D.S. Codd, A. Carlson, J. Rees, and A.H. Slocum, “A low cost high flux solar simulator”, Solar Energy, 84, 2202-2212, 2010.
  • B.M. Ekman, G. Brooks, and M. A. Rhamdhani. “Development of high flux solar simulators for solar thermal research”. Solar Energy Materials and Solar Cells, 141, 436-446, 2015.
  • A. Galloa, A. Marzo, E. Fuentealba, and E. Alonso, “High flux solar simulators for concentrated solar thermal research: A review”, Renewable and Sustainable Energy Reviews, 77, 1385-1402, 2017.
  • V. Esen, Ş. Sağlam, and B. Oral. “Light sources of solar simulators for photovoltaic devices: A review”, Renewable and Sustainable Energy Reviews 77, 1240-1250, 2017.
  • F. Schubert, and D. Spinner, “Solar simulator spectrum and measurement uncertainties”, Energy Procedia, 92, 205-210, 2016.
  • S.C. Solanki, S. Dubey, and A. Tiwari. “Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors”, Applied Energy 86, 2421-2428, 2009.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği